Transformation of Irregular Waves due to Rectangular Submerged Non-porous Breakwaters

Hwang, Jong-Kil / Lee, Seung-Hyeob / Cho, Yong-Sik

Abstract

A combined experimental and numerical effort is presented for investigation of reflection of irregular waves due to rectangular submerged breakwaters. In the numerical model, the Reynolds equations are solved by a finite difference method and $k-\varepsilon$ model is employed for the turbulence analysis. To track the free surface displacement, the volume of fluid method is employed. Numerical predictions of transmission and reflection coefficients are verified by comparing to laboratory measurements. Very reasonable agreements are observed. The reflection coefficients become stronger in proportion to numbers of submerged breakwaters.

Keywords: irregular wave, reflection coefficient, transmission coefficient, submerged non-porous breakwaters, VOF method, $k-\varepsilon$ equations

1. 서 론

해양에서 발달한 파동이 해안으로 진파하는 동안 해저지형 또는 구조물의 영향으로 인해 파동의 형태, 길이, 방향, 진폭, 간격 등과 같은 변화를 겪게 되며, 파동은 연안영향 및 해안구조물의 안전과 설계에 영향을 미친다. 연안영향은 일반적으로 대응 등과 같은 이상조건에서 발생한 후 평상시 다시 회복되는 양상을 가지며, 연안영향을 반영하는 구조물 중 수중방파제(submerged breakwater)는 인식하는 파동에너지의 내규로 간소하게 연안영향을 반영할 뿐만 아니라 반파체수 중에서 설계함으로써 해역환경을 개선한다.

* 한국대학교 대학원 보조공학과 석사과정
 Graduate Student, Dept. of Civil Engineering, Hanyang University, Seoul 133-791, Korea
 (E-mail: hjk707@hanyang.ac.kr)

** 한국대학교 대학원 보조공학과 석사과정
 Graduate Student, Dept. of Civil Engineering, Hanyang University, Seoul 133-791, Korea
 (E-mail: pachen31@empal.com)

*** 한국대학교 대학원 공학부 주교수
 Associate Professor, Dept. of Civil Engineering, Hanyang University
 (E-mail: ysc59@hanyang.ac.kr)

본 연구에서는 농축 하층의 정유수면을 표현하는 Reynolds 방정식을 지지방정식으로 하고, 농수 운동에 나타나 소산물의 나타나는 ϵ^{-1}모델과 복잡한 자유수면 표현을 위해 VOF(volume of fluid) 기법을 사용하였다. 그리고 정유수면을 확장하기 위하여, 수리모형 실험에서는 Goda와 Suzuki(1976)에 의해 제안된 3법을 사용하여 입자와 반응물을 처리하였으며, 수리모형 실험에는 박문득 등 (1992)과 Suh 등 (2001)에 의해 제안된 3법을 사용하여 입자와 반응물의 처리하였다. 따라서, 본 연구에서는 입자와 물질의 결합에 피부모델에 따른 불투과성 수중방류에 의한 반응물과 동류용 Reynolds 방정식, ϵ^{-1}모델 및 VOF 기법을 적용한 수치모형의 결과와 수리모형의 관측 결과를 비교하였으며, 수중방류에 저변칙의 변화에 따른 반응물의 해석하였다.

2. 지지방정식과 수치기법

농수 상층에서 농수 상층의 평균속도 u_i과 농수 수준 u_i'로 구분되며, 압력은 평균 압력 $<P>$와 농수 압력 P'로 구분되며 식 (1)과 같이 표현된다.

\[u_i = \langle u_i \rangle + u_i', \quad P = \langle P \rangle + P' \]

(1)

식 (1)에서 $i=1, 2, 3$으로 차원을 나타낸다.

유체의 효과를 비압축성으로 가정하면, 평균 효과는 연속방정식 (2)와 운동량방정식 (3)과 같은 Reynolds 방정식에 의해 지배된다(조용석과 전진수, 2003).

\[\frac{\partial \langle u_i \rangle}{\partial t} + \langle u_i \rangle \frac{\partial \langle u_i \rangle}{\partial x_j} = - \frac{1}{\rho} \frac{\partial \langle P \rangle}{\partial x_i} \]

(2)

\[+ \frac{1}{\rho} \frac{\partial \langle \tau_{ij} \rangle}{\partial x_j} - \frac{\partial \langle u_i u_j \rangle}{\partial x_j} \]

(3)

식 (3)에서 ρ는 유체의 밀도를 나타내며, g은 중력가속 도의 방향 정수를 의미한다. 또한, $<\tau_{ij}>$는 평균 효과의 정수에 대한 텐서이며, 뉴턴 유체에서는 덱스를 나타내는 μ와 평균 효과의 변형 텐서 $<\sigma_{ij}>$를 이용하여 식 (4)와 같이 나타낸다. (Lin과 Liu, 1998).

\[<\tau_{ij}> = 2\mu <\sigma_{ij}> \]

(4)

평균 효과에서 농수 변동의 영향은 Reynolds 운동텐서를 이용하여 표현하는 것이 가능하며, Reynolds 운동텐서는 비선형 Reynolds 운동 모델로부터 평균효과의 변형텐서와 관계관계가 있다고 가정하면 식 (5)와 같이 나타낼 수 있다(Lin과 Liu, 1998).

\[\rho <u_i, u_j> = \frac{2}{3} \rho \delta_{ij} - C_D \rho k^2 \varepsilon \left(\frac{\partial <u_i>}{\partial x_j} + \frac{\partial <u_j>}{\partial x_i} \right) - \frac{\rho k^2}{\varepsilon} \left[C_1 \left(\frac{\partial <u_i>}{\partial x_i} - \frac{\partial <u_j>}{\partial x_j} \right) + \frac{2}{3} \frac{\partial <u_i>}{\partial x_k} \frac{\partial <u_k>}{\partial x_i} \right] \]

(5)
\[
\frac{\partial k}{\partial t} + \langle u_j \rangle \frac{\partial k}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\frac{\nu}{\sigma_k} + \nu \right) \frac{\partial \langle u_j \rangle}{\partial x_j} - \langle u_i' u_j' \rangle \frac{\partial \langle u_i \rangle}{\partial x_j} \right] - \epsilon - \frac{\partial \langle u_i' u_j' \rangle}{\partial x_j} - \epsilon \tag{6}
\]
\[
\frac{\partial \sigma_e}{\partial t} + \langle u_j \rangle \frac{\partial \sigma_e}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\frac{\nu}{\sigma_e} + \nu \right) \frac{\partial \sigma_e}{\partial x_j} \right] + C_{\nu} \frac{\epsilon}{k} \langle u_i' \rangle \frac{\partial \langle u_i \rangle}{\partial x_j} - C_{\nu} \frac{\epsilon^2}{k} \tag{7}
\]
여기서 \(\sigma_k, \sigma_e, C_{\nu}, C_{\nu} \)는 경험상수이며, 식 (6)과 식 (7)의 결과로 식 (8)이 유도된다.

\[
k = \frac{1}{2} \langle u_i' u_i' \rangle, \quad \epsilon = \nu \left(\frac{\langle u_i' \rangle^2}{\langle u_i \rangle} \right) \tag{8}
\]

식 (8)에서 \(\nu \)는 흐름체계수(molecular kinematic viscosity)이다.

본 연구의 수치모형에서 Reynolds 방정식과 \(k-\epsilon \) 모델은 two-step projection 유한차분법을 사용하여 해석하였다(Chorin, 1968). 시간항은 점방정방법으로 차원화하였고, 이동항은 중앙차분법과 풍상차분법(upwind scheme)의 조합으로 이상화하였다. 또한, 수치수정검에서는 과다한 반사없이 동적적으로 격자영역의 외곽과 오 루직에 개방경계조건을 사용하였으며, 이는 식 (5)와 같이 나타낼 수 있다.

\[
\frac{\partial \phi}{\partial t} + c_0 \frac{\partial \phi}{\partial x} = 0 \tag{9}
\]

식 (9)에서 \(\phi \)는 폭면 수측, 폭면 자유수면변위 등과 같은 파장의 성질이라고, \(c_0 \)는 개방경계에서 파장의 위상속도이다.

VOF 기법은 계산 격자의 형태를 정의하는 방법으로 자유수면을 정확하게 표현할 수 있으며, 자유수면 운동을 추적하는 밀도변화 방정식은 식 (10)과 같다.

\[
\frac{\partial \rho}{\partial t} + \langle u \rangle \frac{\partial \rho}{\partial x} + \nu \frac{\partial \rho}{\partial y} = 0 \tag{10}
\]

먼저, \(\rho(x, y, t) = F(x, y, t) \rho_f \)로 정의하고, 식 (2)에 식 (10)을 대입하면 식 (11)과 같이 \(F(x, y, t) \)에 대한 이상방정식을 얻을 수 있다.

\[
\frac{\partial F}{\partial t} + \frac{\partial}{\partial x} (uF) + \frac{\partial}{\partial y} (vF) = 0 \tag{11}
\]

계산 격자의 위치가 \((i, j)\)에 있을 경우 식 (11)은 식 (12)와 같이 유한차분 형태로 표현할 수 있다.

\[
P^n_{i,j} + F^n_{i,j} = - \frac{\Delta t}{\Delta x_j} (u^n_{i+1/2,j} F^n_{i+1,j} - u^n_{i-1/2,j} F^n_{i,j}) - \frac{\Delta t}{\Delta y_i} (v^n_{i,j+1/2} F^n_{i,j+1} - v^n_{i,j-1/2} F^n_{i,j}) \tag{12}
\]

식 (12)에서 \(F^n_{i,j}, F^n_{i,j+1}, F^n_{i,j+1} \) 및 \(F^n_{i,j} \)는 차례대로 계산 격자의 오른쪽, 왼쪽, 위쪽 및 아래쪽에서의 \(F \)의 값이며, \(F \)에 대한 1차로함수는 식 (13)과 같이 나타낼 수 있다.

\[
\frac{\partial F^n}{\partial x_j} = \frac{\Delta x_j}{\Delta x_{j+1/2}} (F^n_{i+1,j} - F^n_{i,j}) + \frac{\Delta x_j}{\Delta x_{j-1/2}} (F^n_{i,j} - F^n_{i,j-1}) \tag{13}
\]

여기서, \(F^n_{i+1,j} \)는 \((i+1, j)\) 격자에서의 계산 격자 값으로, 계산 격자 주위에 연산으로 위치해 있는 세 개 격자 값의 평균하여 구한다.

3. 실험조건과 입사파

본 실험에서 사용한 장비는 그림 1과 같이 폭 0.6 m, 높이 1.3m, 길이 32.5m의 수로와 전기석으로 포스톤 조사기로 구성된 단면 조사장으로서 양방향 불규칙을 입사파로 사용하였다.

사각형상의 수중방파체는 그림 2에 도시한 것과 같이 저변폭\(W_i\)이 0.4m, 높이\(h_i\)가 0.4m이고 수심\(h_0\)은 0.8m이며, 수중방파체의 배열은 2열 및 3열을 대상으로 하였다. 수중방파체의 배치간격\(d\)은 2m로 설정하였으며, 이는 조응석 등(2004)의 규칙대에 대해서 해석한 결과와 불규칙에 대해서 해석한 장계상(2004)의 결과를 보며 모두 배치간격이 2m에서 반응물이 크게 나타나지 않기 때문이다. 본 연구에서는 수중방파체가 불투과적이며, 벽에 대해 수치 모형시험과 수리모형시험을 격자 수행하였다. 수치 모형시험에서는 수치수정의 크기는 42.0m\(\times\)1.0m이며, \(x\)방향 격자수는 0.1m로 동일한 간격을 사용하였고, \(y\) 방향은 계산의 정확도를 높이기 위해 3개의 간격을 사용하였다. 자유수면과 수중방파체가 위치한 구간에서는 0.015m의 격자간격을 적용하였고, 그 외 구간의 간격은 0.02m를 사용하였으며, 시간 간격\(\Delta t\)는 0.02sec를 사용하였다. 그리고 수치수정 양쪽에서 개방경계조건을 적용하여 파람의 반사 없이 동작하도록 하였다.
수리모형실험과 수치모형실험에 사용된 일방향 불규칙파는 식 (14)와 같은 Bretschneider-Mistuyasu 스펙트럼(Goda, 2000)을 목표 스펙트럼으로 설정하여 제
현하였다.

\[S(f) = 0.205 H_{1/3}^4 T_{1/3}^{-4} f^{-5} \exp[-0.75(T_{1/3}f)^{-4}] \] \hspace{1cm} (14)

식 (14)에서 \(S(f) \)는 주파수 스펙트럼, \(H_{1/3} \)는 불규칙파의 유의파고, \(T_{1/3} \)는 유의파의 주기이며, \(f \)는 주파수를 나타낸다.

수치모형실험에서 불규칙파의 조사는 다음과 같은 과정을 반복하여 수행하였다. 불규칙파는 다른 주기와 파고 등을 가지는 선형파의 조합으로 나타낼 수 있다. 불규칙파의 성분을 분리하기 위해서, 목표 스펙트럼을 Fourier 변환하여 \(n \)개의 성분으로 분리하고 각각의 주기와 파고를 구하였다. 각 성분파의 대표 주파수는 스펙트럼 폐도의 얽임을 가중치로 한 평균값으로 취하였 다. 분리된 성분은 과정의 중점에 의해서 불규칙파를 합성하게 된다. 불규칙파의 특성을 나타내기 위해서는 충분한 시간동안 조사되어야하기 때문에, 수치모형실험에서는 최소 100과 이상이 되도록 하기 위하여 200sec 이상의 자료를 사용하였다.

그림 3은 \(kh = 0.5 \)인 경우 입사파 스펙트럼을 목표 스펙트럼과 비교하여 도시한 것으로 제현된 불규칙파의 스펙트럼은 목표 스펙트럼과 잘 일치하고 있음을 알 수 있다.

수로내에 진행하는 파랑은 구조물에 의해 반사되며, 반사된 파랑은 조종함까지 역 진행하며 다시 제반사된다. 이러한 과정이 반복적으로 발생하기 때문에 수로내에는 다중 반사가 형성된다. 따라서, 입사파와 반사파가 중첩된 파랑으로부터 입사파와 반사파를 분리하는 것은 수리모형실험과 수치모형실험에서 매우 중요한 일이다.

본 연구에서는 입사파와 반사파를 분리하기 위해서 수리모형실험에서는 Goda와 Suzuki(1976)에 의해 제안된 2법을 사용하였고, 수치모형실험에서는 박우성 등

\[\eta(t) = \frac{H}{2} \cos(k_2 x - \omega t + \phi) \]
\[\eta_n(t) = \frac{H_n}{2} \cos(k_2 x_n - \omega t + \phi) \]

표 1. 목표 파랑과 입사 파랑의 유리파랑의 유의주기 비교

<table>
<thead>
<tr>
<th>(kh)</th>
<th>Target Wave</th>
<th>Incident Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>4.00</td>
<td>3.29</td>
</tr>
<tr>
<td>0.7</td>
<td>4.00</td>
<td>2.759</td>
</tr>
<tr>
<td>0.9</td>
<td>4.00</td>
<td>2.235</td>
</tr>
<tr>
<td>1.1</td>
<td>4.00</td>
<td>1.912</td>
</tr>
<tr>
<td>1.3</td>
<td>4.00</td>
<td>1.696</td>
</tr>
<tr>
<td>1.5</td>
<td>4.00</td>
<td>1.540</td>
</tr>
<tr>
<td>1.7</td>
<td>4.00</td>
<td>1.423</td>
</tr>
</tbody>
</table>

식 (18)에서 \(z\)는 기준점으로부터 \(n\)번째 파고계까지의 거리를 나타내며, \(X\)는 입사파와 반사파의 파고 및 위상에 관련된 미지의 계수이다.

\[\eta_n(t) = X_1 \cos(k_2 x_n - \omega t + \phi) + X_2 \cos(k_2 x_n + \omega t + \phi) + \epsilon_n(t) \]

식 (18)의 \(X_1\)과 \(X_2\)는 각각 입사파와 반사파의 파고 및 위상에 해당하는 미지의 계수이다. 파고계의 \(N\)개의 파고계로부터 \(T_n\)시간동안 중시에 계측된다고 가정하면, 파고계에 포함된 오차 값을 평균한 총합은 식 (19)와 같이 표현된다.

\[\epsilon = \frac{1}{T_n} \int_0^{T_n} \epsilon_n(t)^2 dt \]

식 (19)에 의해 \(X_j\)에 대해 최소화하면, 입사파와 반사파의 파고와 위상은 얻을 수 있다. 이는 식 (20)와 같이 표현할 수 있으며, 이를로부터 얻어지는 신호의 세부 정보를 얻어 \(X_j\)를 계산할 수 있다.

\[\frac{\partial^2 \epsilon}{\partial X_j} = 0, \quad j = 1, 2, 3, 4 \]

계산된 \(X_j\)를 이용하여 입사파와 반사파의 위상을 구할
수 있으며, \(X_\mathbf{r} \)와 위상을 식 (21)에 대입하여 입사파고와 반사파고를 얻을 수 있다.

\[
H = \frac{2(X_\mathbf{r} + X_i)}{\cos \phi_i + \sin \phi_i}, \quad H_i = \frac{2(X_\mathbf{r} - X_i)}{\cos \phi_i + \sin \phi_i} \tag{21}
\]

본 연구에서는 불규칙파와의 입사파와 반사파를 분리하기 위해서 각 파장의 성분별로 상기의 과정을 반복하여 적용하였다.

적용된 3점법은 검증하기 위해서 수치수치 안에 장애물이 없는 완전동파와 높이 0.9m의 장애물을 설치한 완전반사의 두 가지 경우에 대해서 각각의 반사율을 구하였다. 사용된 입사파의 제한은 유의파고 0.04m, 유의주기는 3.733s/sec이며, 수심은 0.8m이다. 그림 4는 3점법을 적용하여 완전동파와 완전반사의 조건에서 입사파와 반사파를 분리한 그림이며, 분리된 입사파는 목표 입사파와 잘 일치하고 있음을 알 수 있다. 완전동파인 경우 반사율은 0.037이고, 완전반사인 경우에는 1.009였다.

그림 5는 \(kh = 0.5 \)인 경우, 검증된 3점법을 적용하여 3열 수중발사체의 입사파와 반사파를 분리한 그림이다. 분리된 입사파는 목표 입사파와 잘 일치하고 있음을 보여주며, 0.23Hz에서 에너지 밀도가 최대가 되었음을 보여준다.

4. 결과분석

입사파와 반사파의 에너지는 각각의 파고의 자승에 비례하므로 파고의 비로 정의된 반사율 \(R \)과 통과율 \(T \)은 식 (22)와 같이 표현할 수 있다.

\[
R = \sqrt{E_i/E}, \quad T = \sqrt{E_r/E}, \tag{22}
\]

여기서 \(E_i, E_i \) 및 \(E_r \)은 차례대로 입사파, 반사파 및 통과파의 에너지이다.

그림 6과 그림 7은 불투과성 사각형형상 수중발사체의 베열 수(m) 변화에 따른 반사율과 통과율 각각 도시한 것이다. 수치모형실험 및 고유값수계법(EFEM)으로 해석한 반사율 결과를 수리모형실험 결과를 비교하였다. 정제성 등(2004)에 의해 개선된 고유값수계법의 해석결과는 불규칙파를 다수의 규칙파의 중합으로 구성하였으며, 각각의 규칙파의 해석결과를 합성하여 해석한 것이다.
그림 5. 압사파와 반사파 분리 (m=3, kh=0.5)

그림 6. 사각형상 수중방파제의 반사율과 통과율 (m=2)

그림 7. 사각형상 수중방파제의 반사율과 통과율 (m=3)

그림 6은 사각형상 수중방파제가 2m 간격으로 2개(m=2)가 설치된 경우로서, 수리모형실험 결과와 수치모형실험 및 고유함수관계법에 의한 해석결과가 비교적 잘 일치하고 있음을 알 수 있다. 주기차를 보더라도 수리모형실험 결과와 비교적 잘 일치하고 있지만, 본 연구에서 수행한 수치모형실험 결과는 수리모형실험 결과와 매우 근사한 데 있다. 최대 반사율은 수리모형실험과 수치모형실험 모두 kh = 0.9에서 나타났고, 반사율은 각각 0.38와 0.34였다.

그림 7은 사각형상의 수중방파제가 2m 간격으로 3개(m=3) 설치된 경우로서 그림 6의 경우와 마찬가지로 수리모형실험 결과와 수치모형실험의 결과가 전체적으로 잘 일치하고 있다. 고유함수관계법에 의한 결과는 m=2인 수중방파제의 경우와 마찬가지로 kh < 1.0 범위에서는 수리모형실험 결과와 비교적 잘 일치하고 있으나, kh > 1.0 범위에서는 약간의 차이를 나타내고 있다. 최대 반사율은 수리모형실험과 수치모형실험 모두 kh ≈ 1.1에서 나타났고, 반사율은 각각 0.42와 0.41로 나타났다.

그림 6과 7에서 반사율과 통과율은 $R^2 + T^2 \approx 1$을 만족하고 있음을 알 수 있다. 이는 과방의 좌우대칭이
지형을 동과할 때 에너지 보존법칙에 의해서, 반사율과 통과율은 각각 급감한 합이 1.0이 되어 임의의 값으로 증가하고 있음을 확인할 수 있다.

그림 8은 사각형형상 수중방파제의 범열에 따른 반사율을 비교하기 위해 수리모형실험과 수치모형실험 결과를 도식한 것이다. 수리모형실험과 수치모형실험이 모두 범열의 수가 증가함수록 반사를 증가하였으며, 최대 반사율은 \(k h = 1 \) 부근에서 나타났다. 범열 수에 관계없이 공간이 발생하는 \(k h \)는 모두 0.9<\(k h <1.1 \)이었다. 이는 수리모형실험 및 수치모형실험 결과 모두 Bragg 반사 조건인 \(k h \approx 1 \) 부근에서 공명현상에 의해 반사율이 증폭되었다고 판단된다.

그림 9와 10은 수리모형실험에서 2m 간격으로 3개 (m=3) 설치된 수중방파제의 저먼폭의 변화에 따른 반사율과 에너지 소산율을 도시한 것이다. 수실검은 기준으로 방파제의 높이 \(h_b \)는 0.4m로 고정시키고, 저먼폭 \(W_b \)은 수실검 기준으로 0.3h~1.1h까지 0.2h씩 증가시켰다. 수중방파제의 높이를 0.5h로 고정시킨 것은, 실제 해역에 수중방파제를 설치할 경우, 선박의 운항에 장애이 없도록 하기 위함이다.

그림 9에서 저먼폭이 0.9h보다 커지면, \(k h \approx 1.1 \) 부근에서 반사율이 감소가 작아지는 것을 알 수 있다. 반사율 감소가 작아지는 것은 저먼폭의 증가에 따른 폐파가 발생하였기 때문으로 판단된다. 이를 확인하기 위해서, 그림 10에서 에너지 소산율 \(C_e \)를 도시하였다. 에너지 소산율은 \(C_e = 1 - R^2 - T^2 \)로 나타낼 수 있다. 에너지 보존법칙에 의해 좌우대칭인 저먼을 가진 과정의 반사율과 통과율의 점근함이 1을 만족해야 하지만, 저먼폭이 0.9h보다 커지면 1보다 작은 값을 가지게 된다. 이는 폐파에 의해서 차이만큼 에너지 소산이 발생하였기 때문이다.

5. 결 론

본 연구에서는 기존의 수심 평균된 방정식인 천수방정식과 Boussinesq 방정식으로 재현하기 어려운 자유 수면 변동의 정확한 형상과 유속장해를 표현하고 난류운동 에너지의 공간적인 분배를 결정하기 위해 Reynolds 방정식, \(k - \varepsilon \)모델 및 VOF 기법을 사용하였으며, 수리모형실험 결과는 수치모형실험과 고유함수계법을 이용한 결과와 비교하였다. 그리고 정확한 반사율 산정을 위하여 수리모형설명의 파고키로는 2점법을 사용하여 입사파의 반사파를 분석하였으며, 수치모형설명의 파고 기로는 3점법을 사용하여 분석하였다.
수지모형실험 결과는 고유함수법을 이용한 결과보다 수지모형실험 결과와 잘 일치하였다. 고유함수법에 의한 결과는 주기가 불가침수록 수지모형실험 결과와 차이가 발생하였지만, 수지모형실험에 의한 결과는 주기에 관계없이 비교적 잘 일치하였다. 또한, 수중방파제의 배열이 증가할수록 반사율은 증가하였지만, 공진주기는 비슷한 위치에서 발생하였다. 반사율과 동
과수들은 각각 제공된 값이 1.0이 됨을 통해서 파랑의 에너지보존을 잘 만족하고 있음을 확인할 수 있었다.

수중방파제 지면폭의 증가에 따른 수지모형실험을 수행한 결과, 반사율은 지면폭이 증가함에 따라 증가하지만, 일정크기를 초과하면 오히려 감소함을 알 수 있다고 한다. 이러한 현상이 발생하는 여러 가지 원인 중에서, 가장 큰 원인은 셔파가 발생하여 에너지를 감소시키기 때문에로 판단된다.

수중방파제의 목적이 반사율을 증가시키고 셔파를 발생시키기 위해 간소한 방식이다. 단순히, 수중방
파제의 높이를 증가시키면 반사율이 증가시키는 방법은 산바운향에 영향을 줄 수 있다. 따라서, 수중방파제의 지면폭의 변화와 배열의 변화에 관한 연구가 추가적으로 수행되어야 할 것이다.

감사의 글

본 연구는 산학연 공동기술개발 컨소시엄 과제로 중소기업청, 서울특별시 및 (주)대영엔지니어링으로부터 재정적 보조를 받았기에 이에 사의를 표합니다.

참고 문헌

전주호, 조용식, 이종인 (2003). "사각형상수중방파제에 의한 정현파와 Bragg 반사." 한국수자원학회
논문집, 제36권, 제5호, pp. 741-749.

정재상, 조대희, 황종길, 조용식 (2004). "사각형상수중 방파제의 동과하는 불규칙파의 반사." 한국수자원학회
논문집, 제35권, 제4호, pp. 207-213.

Chorin, A.J., (1968). "Numerical solution of the

(논문번호:04-78/검수:2004.08.11/심사완료:2004.10.11)