Analysis of Flood Runoff Characteristics due to Rainfall Pattern Change:
Comparison of Applications to Small and Medium Size Basins

Yoo, Chulsang / Kim, Kyoungjun

Abstract

In this study, the probability density functions (PDFs) of the rainfall generated by PRPM (Poisson Rectangular Pulse Model) and the runoff simulated by SLRM (Single Linear Reservoir Model) and Nash model, were compared to find out the changes of runoff characteristics due to the change of rainfall characteristics. Effect of rainfall frequency, intensity, and duration on runoff were evaluated using the PDF's derived. Two basin, small and midium-sized ones, were also selected to find out the effect of basin size. As the results, we found that the arrival time, the intensity, and the duration of rainfall differently influence the runoff characteristics, which could be applied to evaluate the effect of climate change.

keywords: PRPM, SLRM, Nash model, PDFs

요 지

본 연구에서는 강우의 특성 변화가 수출 특성에 미치는 영향을 파악하기 위하여 구형밀스모형으로 모의시킨 강우로 생합지를 모형과 Nash 모형에 수출모의하여 그 수출량에 대한 확률밀도함수와 강우의 확률 밀도함수와 비교하였다. 이를 통해 강우의 발생빈도, 강우강도, 지속시간이 수출에 어떻게 기여하는지에 대하여 파악하였다. 소규모 수출과 중규모 수출에 대한 영향을 분석하기 위하여 두 개의 대상수역을 선정하였다. 그 결과 강우의 발생빈도, 강우강도, 지속시간의 변화에 대하여 수출량이 다양한 특성을 보이는 것을 확인 할 수 있었으며, 이는 향후 기후변화에 대한 영향을 평가하는데 적용될 수 있을 것이라 판단된다.

핵심어: 구형밀스모형, 생성지수지 모형, Nash 모형, 확률밀도함수

1. 서 론

강우의 특성 변화에 따른 수출 특성의 변화를 파악하기 위하여 구형밀스모형, Nash 모형의 확률밀도함수를 이용하였다. 이와 같은 강우의 특성 변화에 따른 수출 특성의 변화는 집중효과로 인한 효율이 이와 반대상황인 경우의 비정상적인 발생을 유발할 수 있다.喬문 강우지속시간의 경우 강우강도를 가진 효율사성이 긴 제한기간을 가지고
발생하는 경우와 상대적으로 짧은 구조의 시간에 걸쳐 작은 강수량도 비슷하게 발생하는 경우를 고려해 본다면, 그 차이점을 확인히 점검할 수 있다. 이와 같이
강수시간대가, 강수량도, 강수량시간대는 다양한 조건
으로 인한 다양한 강수의 형태는 유출에도 큰 영향을 미
침 수밖에 없다.
유출 특성의 변화는 기본적으로 가용수자의 확보
하천의 건전성 및 하천유수량의 확보 및 수질방어
관련된 수조문제 등을 갖춘 많은 문제에 있어 큰 변화
을 초래한다. 따라서 강수의 특성에 따른 유출 특성을
정량화하고 이를 규명하는 것은 효과적인 수자원 관리
에 있어 매우 중요한 부분이다. 이러한 문제는 최근
규제 대상이 되고 있는 지구 온난화 기후 변화에 따른
수문환경의 변화에 대한 평가에 있어서도 매우 중요한
부분이 될 것이다. 또한 이러한 변화는 하천유역의 특성
에 따라서도 다르게 나타날 수 있다(Aston, 1984;
Boorman and Setfon, 1997; Setfon and Boorman, 1997;
Niewof et al., 2002; Evans, 2003; Dugate et al., 2004).
우리나라에서는 수문환경의 변화에 따른 수자원의
평가에 관한 연구가 활발하게 진행되고 있다. 우선
김승과 김현중(1994)은 2CO2 상황에서의 우리나라의 5
대강의 유출변화를 묻는 방정식을 이용하여 계산한
바 있고, 최근 김길식 등(2004)은 GCM(General
Circulation Model)을 이용하여 연간 평균 대기기상
자료를 입력으로 한 SLURP 모형의 유출특성을 통하여
용량연 연역에 관한 기후변화에 따른 유출량의 변화
을 평가한 바 있다. 또한, 김동배 등(2004)은 GCM 모의결
과를 이용하여 대량부 유역의 기온 및 강수량을
Markov 연쇄로 도의 발생하고 이를 유출모형하여 기후
변화에 따른 유출량의 영향을 분석한 바 있다. 이동률
등(2004)은 기후변화에 따른 가뭄과 홍수의 영향을
분석하기도 하였다.
그러나 이와 같은 연구들은 대재로 지정기수확예
치로 되어 있으며, 중류방보다 이상의 수확에 주로 적용되고
있다는 특징을 가지고 있다. 그러나 기후변화에 따른
유출 패턴의 변화는 중류도 또는 대규모 수확의 경우보
다는 수확도 수확에서 보다 더 심각한 것으로 예상되는
다. 기후로 연구들이 대재로 입자료를 이용한 연구들로
기 때문에 수확도 수확의 경우처럼 구간적인 수확량을
이 발생하는 경우에는 적당하지 않을 수 있다. 따라서
본 연구에서는 수확도 수확의 유출량 변화양상을 알아
보기 위하여 시간 단위 자료를 이용하여 그 영향을 평
가하고자 한다.
본 연구에서 사용된 방법은 Biekens and Puente
(1990)에 의한 연구와 유사하다. 그들의 연구에서는 구
형렬수모형과 Neumann-Scott 구형렬수모형에 선형저수
지 모형(Single Linear Reservoir Model)과 선형저수지
모형(Parallel Linear Reservoir Model)을 각각 결합하여
만들어지는 유출의 1차 및 2
차 동적특성을 나타내는 확률밀도함수를 정량화하려고
하는 것이며, 비로 이 부분이 본 연구에서 검증하
고자 하는 부분이다. 특히, 강우의 특성이 크게 변하는
경우 유출의 특성을 어떤 식으로 영향을 미치는지에 대
하여 고찰해 보고자 한다. 본 연구에서는 구형렬수모형,
유출특성모형으로 선형저수지모형
(Single Linear Reservoir Model)과 Nash 모형을 이용
하였다. 또한 수확도 수확의 영향을 고려하기 위해
규모 수확 모형, 축마장, 중류모 수확, 중류량 보고
영향은 대상으로 하여 적용하였다.

2. 배경 이론

2.1 갑무모형: 구형렬수모형(Poisson Rectangular
Pulses Model: PRPM)
수문분야에서 흔히 사용되는 구형렬수모형은 Eagleson
(1972), Waynare and Gupta(1981), Rodriguez-Iiturbe
et al.(1984), Rodriguez-Iiturbe(1986)등 많은 연구에서
사용되어온다. 이 모형은 이후 재산성을 추가로 고려
하던 여러 모형들로(Rodriguez-Iiturbe et al., 1987;
1988; Entekhabi et al., 1989; Islam et al., 1990) 발전되
어 왔으나 여전히 포아송과정을 기본으로 하는 점감수
포모형의 경향을 이루고 있는 모형이다. 이 모형은 그 구
조가 간단한데 게재변수의 수가 작아 여러 연구에서
서 많이 이용되고 있기도 하다(Diaz-Granados et al.,
1994; Raines and Valdes, 1993; 한국건식기술연구원,
1998; 유석상 등, 2001). 이 모형의 구조 및 특성을 살펴
보면 다음과 같다.
구형렬수모형은 개개 갑무상자 x(t)의 발생을 나타
내는 과정 N(t)는 랜덤 변수 X인 포아송과정을 따르고
각 갑무상자의 발생시간 Tn과 더불어 갑무상자의 지속
시간 τn과 갑무 x(t)은 한 단위로 U = (τn, x(t))
으로 나타낸다(Fig. 1). 따라서 U(t)은 시간 T에 발생
한 갑무상자의 기본특성이 된다. 각 상자의 특정인 U
은 상호 독립적이며 독립하게 분포되어 있고
(independent and identically distributed) 발생시간 T
과도 역시 독립적이다. 일반적으로 각 갑무상자의 강도
와 지속기간은 독립적인 무작위 변수로서 각각 지수확
률도함수를 따른다고 가정한다.
Fig. 1. Concept of Poisson Rectangular Pulses Model (Rodriguez-Iturbe, 1986)

\[f(t_i) = \mu e^{-\mu t_i}, \ \mu > 0 \]
\[f(t_r) = \eta e^{-\eta t_r}, \ \eta > 0 \]
\[f(U) = f(i_1, t_r) = \mu e^{-\mu t_r - \eta \frac{t_r}{T}} \]

이어서 \(\eta \)와 \(\mu \)는 강수지속시간과 강수강도에 관한 매개 변수로 \(E[t_i] = 1/\eta \), \(E[t_r] = 1/\mu \)는 각각 사상의 평균 지속시간과 평균강수강도를 나타낸다. 이러한 모형의 경우 평균강수강도는 다음과 같이 구해진다.

\[E[t_i] = \lambda E[i_1]E[t_r] = \lambda/\mu \eta \]

또한 분산 및 상관함수는 다음과 같이 유도될 수 있다.

\[\text{Var}[\xi(t) = 2\lambda/\eta \mu^2 \]

\[\text{Corr}[\xi(t_1), \xi(t_2)] = R(\tau) = e^{-\tau}, \ \tau = t_2 - t_1 \geq 0 \]

Eq.(6)로부터 이 모형의 상관함수가 강수사상의 지속시간 \(\eta^{-1} \)에만 의존한다는 것을 발견할 수 있다. 즉 매개변수 \(\lambda \)와 \(\mu \)는 어떠한 역할을 하지 않는다. 아울러 \(R(\tau) \)는 마르코프(Markov)과정의 상관함수가 되기 위한 필요충분조건을 갖추고 있다. 정상과정(stationary process)이 되기 위한 조건은 다음과 같이 표현된다.

\[R(t_2 - t_1) = R(t_2 - t_3)R(t_3 - t_1) \]

이어서 \(t_1 < t_2 < t_3 \)는 세 개의 임의의 시간이다. 현재까지의 상태에서 \(\xi(t) \)는 변속 매개변수 마르코프 체인으로 볼 수 있다. 구형Parcel모형의 이러한 마르코프 의존 구조는 3개의 중요한 가정의 결과인데, 그 첫째가 사상의 도달시간이 포아송과정을 따른다는 것, 둘째가 사상의 지속시간 \(t_r \)이 상호독립이고 지수분포를 따른다는 것, 셋째가 \(t_r(n) \)과 \(t_r(n) \)이 서로 독립이라는 것이다.

그러나 실제 강우자료는 누가던 형태로 존재하므로 모형의 적용을 위해서는 즉, 매개변수를 추정하거나 주어진 시간축에 대한 모형의 특성을 시험하기 위해서는 주어진 시간 \(T \)에 대해 다양한 시간간격의 누가강수를 이에 대한 고려가 필요하게 된다. 먼저 \(Y_i \)의 총합과 각이 정의하라.

\[Y_i = \int_{(i-1)T}^{iT} \xi(s)ds, \ i = 1, 2, \ldots \]

\[\xi(t) \]의 정상성에 따라서 \(Y_i \)도 \(U_n \)과 마찬가지로 통일하게 분포함을 알 수 있다. \(Y_i \)의 평균, 분산 및 공분산은 다음과 같다.

\[E[Y] = T\lambda/\mu \eta \]

\[\text{Var}[Y] = \frac{4\lambda}{\eta \mu^2} (\eta T^{-1} + e^{-\eta T}) \]

\[\text{Cov}[Y_1, Y_k] = \frac{2\lambda}{\eta \mu^2} (1 - e^{-\eta T})^2 e^{\eta (k-2)T}, \ k \geq 2 \]

여기서 \(Y_i \)의 상관구조가 \(\eta \)와 \(T \)에만 의존한다는 데 주목할 필요가 있다.
구형필스모형의 매개변수 \(\lambda, \eta, \mu \)의 추정은 Eqs. (9) \~ (11)을 이용하여 수행될 수 있다. 일반적으로 모형의 매개변수는 관측치의 평균, 분산 및 lag-1 상관계수가 보전되도록 추정된다.

2.2 유출량 모형

본 연구에서는 먼저 강우-유출 과정을 하나의 선형 저수지모형으로 가정하였다. 선형저수지는 저류량 \(S \)가 유출량 \(O \)에 선형적으로 미치는 가속적인 저수지이며, 따라서 그 유출특성(단위유량도)은 간단한 Eq.(12)과 같이 저류상수 \(K \)을 매개변수로 하는 저수효율로 나타난다(Bras, 1990). 유역의 규모가 큰 경우에 비 현실적인 유출량을 나타내는 단점이 있으나, 이론적인 유출량을 가정하게 한다는 장점이 있어 본 연구에 체택하였다.

\[
h(t) = \frac{1}{K} e^{-t/K}
\tag{12}
\]

여기서, \(h(t) \)는 시간 \(t \)에서 순간단위수(IUH, Instantaneous Unit Hydrograph)의 총계, \(K \)는 저류상수이다.

2.3 유출량 모형: Nash 모형

Nash(1957)는 유역전체가 일원의 \(n \)개 저수지로 구성되어 있으며 각 저수지에 대한 저류량(\(S \))과 유출량(\(O \))의 관계는 \(S = KO \)와 같은 저류상수 \(K \)를 갖는 선형관계를 가진다고 가정하였다. 총 \(K \)개 저수지가 순차적으로 만수되어 두 번째 저수지로 유출되고, 두 번째 저수지로부터 세 번째 저수지로 유출되어 마지막 \(n \)번 저수지들을 통과한 유출량을 구하고자 한다고 생각하면

\[
I - O = K \frac{dO}{dt}
\tag{13}
\]

이 식에서 \(I \)는 유출량이고 \(O \)는 저수량이고 \(I \)는 유출량이고 \(O \)는 저수량이다. 따라서 Eq.(13)은

\[
- O_1 = K \frac{dO_1}{dt}
\tag{14}
\]

Eq.(14)을 풀면

\[
O_1 = \frac{1}{K} e^{-t/K}
\tag{15}
\]

여기서 \(O_1 \)는 첫 번째 저수지로부터의 유출량인 동시에 두 번째 저수지로의 유입량이다. 따라서, 두 번째 저수지에 대한 Eq.(13)의 관계는

\[
O_1 - O_2 = K \frac{dO_2}{dt}
\tag{16}
\]

Eq.(16)을 풀면

\[
O_2 = \frac{1}{K} \left(\frac{t}{K} \right)^2 e^{-t/K}
\tag{17}
\]

마찬가지 방법으로 세 번째 저수지로부터의 유출량을 구하면

\[
O_3 = \frac{1}{K} \left(\frac{t}{K} \right)^3 e^{-t/K}
\tag{18}
\]

마지막 \(n \)번째 저수지로부터의 유출량, 즉 전체 유역으로부터의 유출량은

\[
u_n(t) = \frac{1}{K(n-1)!} \left(\frac{t}{K} \right)^{n-1} e^{-t/K}
\tag{19}
\]

Eq.(19)는 유역 전체에 걸쳐 순간적으로 넓은 단위유량 \(n \)개의 저수지로 분할, 선형적이고 많은 순간단위수(IUH, Instantaneous Unit Hydrograph)의 총계를 계산하는 식이다(Yoon, 2001).

2.4 강우발생률, 강우강도, 강우지속시간의 변화에 따른 강우 모형

강우에 따른 유출의 특성 변화를 알아보기 위해서는 강우가 가계되는 여부가 특정, 다시 말하면, 강우 발생률, 강우 강도, 강우 지속시간 등과 같은 특성들의 변화에 따라 변화하는 유출의 특성을 파악해야 한다. 이와 같은 강우의 특성은 구형필스모형의 매개 변수(\(\lambda, \mu, \eta \))를 이용하여 쉽게 모의할 수 있다. 본 연구에서는 강우의 특성을 변화를 주기 위하여 크게 두 가지 경우에 대하여 강우모형을 수행하였다. 첫 번째(\(\lambda \))는 강우발생과 관련된 매개변수로 변화시키지 않고, 강우계수보다 강우지속시간을 결정하는 매개변수만 변화시키는 경우이다. 즉 강우발생과 관련된 매개변수(\(\lambda \))는 주정된 값을 사용하고, 강우계수(\(1/\mu \))와 강우지속시간(\(1/\eta \))으로 추정된 매개변수를 2배, 4배, 8배의 변화를 주 경우에는 두 번째
(Set B)는 강우발생률 변화시키는 경우이다. 이 경우 에 있어서는 평균강우량도인 1/μ는 일정하게 하고 강우 지속시간만을 조정하였다. 총 강우량을 일정하게 유지하기 위해 두 변수의 곱은 항상 1이 되도록 하였 다. 위의 두 가지 경우(Set A, Set B)에 대한 내용을 정리하면 Table 1과 같다.

3. 실제유역에 적용

3.1 대상유역 및 대상자료

본 연구에서 고려하는 2개의 유출모형이 대상유역의 규모에 따라 어떤 차이를 나타내는지를 알아보기 위 해 소규모 유역과 중규모 유역을 각각 1개씩 선정하였 다. 선정지수 마모형의 경우는 강우에 대한 유역의 응 담이 신속히 나타나기 때문에 소규모 유역에 적합 한 모형이라 할 수 있으며, Nash 모형의 경우는 지하수 간이 고려되기 때문에 중규모 유역에 더 적합한 모형이라 할 수 있다.

규모가 작은 대상유역으로는 건설기술연구원의 시험 유역인 설마천 유역을 선정하였다. 설마천은 인천의 하 구에서 약 46 km 상류인 경기도 파주시 적성면에 위치 하고 있는 인천강의 1 지류로서, 전체 유역면적 185 km², 유로연장 11.3 km인 수도사랑 대형댐의 저장소로 유역이다. 이 중에서 시험유역은 설마천 유역의 중류부 에 위치한 영국군 전적비로 축구장으로 한다. 설마천 시험유역은 유역면적 85 km², 유로연장 58 km인 신형 적인 산지천이 다. 이 유역은 대부분이 산악지형으로 이루어져 있으며, 유역의 동쪽에는 시험유역에서 가장 늘 은 강인산(EL 675 m)이 위치하고 있다. 유역내에는 우 량관측소 5개소(전경비로, 비행기내, 설마천, 범람수, 강인산), 그리고 수위관측소 2개(전경비로, 사방램)가 있다(한국건설기술연구원, 2002).

소장강을 위한 우리나라의 대표적인 대목적 댐으로 수 도권과 현장유역의 이수뿐만 아니라 지수기능에도 큰 역할을 담당하고 있는 중요한 댐으로서 댐 상류의 유역 면적은 2,703 km²이며 유로연장은 154.4 km이다. 소장 강은 위치상으로 충청남도 동북방향으로 약 13 km 지점 떨어진 강원도 충청북도 동북방향으로 떨어진 지점 에 위치하고 있으며, 하천상으로는 북한강과 제 1천류 인 소장강의 하구에서부터 상류로 약 12 km 지점에 위치하고 있다(최민호 등, 2001). 설마천과 소장강의 대 상유역도는 Fig. 2와 같다.

구형필스모형으로 강우를 모의시키기 위하여 유역 내에 양질의 강우 자료가 존재하는 강우관측소를 차례로 선정하였다. 설마천의 경우는 설마천 관측소이 며, 소장강에는 강우의 경우는 인천 관측소이다. 대상자료는 1998년 1월(6일~7일) 12일간의 시장우(자료Fig. 3)이며, 기본적인 통계적 특성은 다음과 같다(Table 2). 여기서 Corr(k)는 k차 자기상관계수를 나타낸다.

3.2 강우모의

3.2.1 구형필스모형의 매개변수 추정

구형필스모형의 매개변수는 Eqs.(6)~(11)을 이용하 여 최적 매개변수를 추정할 수 있다. 추정된 매개변수 와 모의된 자료에 대한 통계치들은 Table 3과 같다.

3.2.2 강우의 특성에 따른 통계적 특성변환

Table 1과 같은 경우를 계열하기 위하여 설마천과 인체 강우관측소에서 추정된 구형필스모형의 매개변수 를 이용하여 Set A, B를 구성하면 Table 4와 같다. 이 를 이용하여 100,000 시간 모의된 각각의 자료에 대한 기본적인 통계적 특성치들을 추정하면 Table 5와 같다.

강우발생률 변화를 주지 않고 강우량도와 지속시 간의 변화를 주는 경우인 Set A는 Case 1에서 Case 7로 변화함에 따라 강우량도는 커지고 강우지속시간은 줄어 드는 경우를 나타내게 된다. 모든 Set에서 Case 4는 일 강우량도에 대한 매개변수를 나타내었다. 따라서 Set A의 Case 1은 강우량도가 작은 경우가 긴 지속기간에 걸쳐 발생한 경우이며 Case 7은 큰 강우량도가 짧은 강우치
Fig. 2. Study Area and locations of used raingauges

Fig. 3. The data set of two rain gauging stations

Table 2. Basic statistics for the data set of two rain gauging stations

<table>
<thead>
<tr>
<th>Station</th>
<th>Total Depth (mm)</th>
<th>Mean (mm)</th>
<th>Variance (m²)</th>
<th>Corr(1)</th>
<th>Corr(2)</th>
<th>Corr(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sel Ma ri</td>
<td>1536.5</td>
<td>0.525</td>
<td>7.358</td>
<td>0.588</td>
<td>0.412</td>
<td>0.313</td>
</tr>
<tr>
<td>In Je</td>
<td>1102.0</td>
<td>0.376</td>
<td>5.317</td>
<td>0.573</td>
<td>0.315</td>
<td>0.215</td>
</tr>
</tbody>
</table>

Table 3. Parameters and basic statistics of rainfall

<table>
<thead>
<tr>
<th>Station</th>
<th>λ (1/hr)</th>
<th>$1/\mu$ (mm/hr)</th>
<th>$1/\eta$ (1/hr)</th>
<th>Mean (mm)</th>
<th>Variance (m²)</th>
<th>Corr(1)</th>
<th>Corr(2)</th>
<th>Corr(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sel Ma ri</td>
<td>0.04924</td>
<td>9.15286</td>
<td>1.16425</td>
<td>0.518</td>
<td>8.103</td>
<td>0.477</td>
<td>0.200</td>
<td>0.079</td>
</tr>
<tr>
<td>In Je</td>
<td>0.03642</td>
<td>9.34352</td>
<td>1.10595</td>
<td>0.368</td>
<td>5.835</td>
<td>0.447</td>
<td>0.176</td>
<td>0.071</td>
</tr>
</tbody>
</table>
Table 4. Poisson rectangular pulses model parameters for cases characterized by the rainfall arrival rate, intensity and duration

<table>
<thead>
<tr>
<th>Station</th>
<th>Seol Ma Ri</th>
<th>In Je</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set</td>
<td>Case</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.04924</td>
<td>1.14411</td>
</tr>
<tr>
<td>2</td>
<td>0.04924</td>
<td>2.28822</td>
</tr>
<tr>
<td>3</td>
<td>0.04924</td>
<td>4.57643</td>
</tr>
<tr>
<td>4</td>
<td>0.04924</td>
<td>9.15286</td>
</tr>
<tr>
<td>5</td>
<td>0.04924</td>
<td>18.36572</td>
</tr>
<tr>
<td>6</td>
<td>0.04924</td>
<td>36.61441</td>
</tr>
<tr>
<td>7</td>
<td>0.04924</td>
<td>73.22288</td>
</tr>
</tbody>
</table>

B			B				
1	0.00616	9.15286	9.31402	1	0.00455	9.34352	8.84760
2	0.01231	9.15286	4.65701	2	0.00911	9.34352	4.42380
3	0.02462	9.15286	2.32851	3	0.01821	9.34352	2.21190
4	0.04924	9.15286	1.16425	4	0.03642	9.34352	1.10695
5	0.09848	9.15286	0.58213	5	0.07284	9.34352	0.55238
6	0.19696	9.15286	0.29106	6	0.14568	9.34352	0.27649
7	0.39392	9.15286	0.14553	7	0.29136	9.34352	0.13824

Table 5. Basic statistics for rainfall data generated

<table>
<thead>
<tr>
<th>Station</th>
<th>Seol Ma Ri</th>
<th>In Je</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set</td>
<td>Case</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.518</td>
<td>0.758</td>
</tr>
<tr>
<td>2</td>
<td>0.661</td>
<td>1.743</td>
</tr>
<tr>
<td>3</td>
<td>0.412</td>
<td>2.357</td>
</tr>
<tr>
<td>4</td>
<td>0.365</td>
<td>3.955</td>
</tr>
<tr>
<td>5</td>
<td>0.518</td>
<td>1.175</td>
</tr>
<tr>
<td>6</td>
<td>0.39392</td>
<td>0.811</td>
</tr>
<tr>
<td>7</td>
<td>0.39392</td>
<td>0.811</td>
</tr>
</tbody>
</table>

속간사자치며 발생한 경우이다. 이 경우에 있어서는 강우발생 비도는 고려하지 않았다. 강우의 평균은 갑격
으로 유지되기 때문에 단위시간 내에서 강우 평균은 비슷한 값을 갖는다. 그러나 본산, 해곡도 계수, 침
액도 계수, 1차 자가상관계수들에서는 큰 차이가 나타
난다. 즉, Case 1에서 Case 7로 변동하면서 강우가 증가하여

또한 Set B는 강우 발생률에 변화를 줄 경우로 Case
1에서 Case 7로 변동함에 따라 강우발생률이 증가하여
다번변화에 강우가 발생하는 경우를 나타낸다. Set B
에서도 Case 4은 원자료에 대한 대개변수에 관한 경우
이다. 따라서 현행의 상황은 Case 4라 한다면 Case 5, 6, 7은 현재 상황보다 강우가 2배, 4배, 8배 번변
화에 강우가 발생하는 상황을 나타낼 수도 있으나 그에 따라 강
우 지속시간 대비 8배, 4배, 4배로 감소하게 되는 경우
이다. Case 1, 2, 3는 이와 반대로 변하는 경우이다. Set
B의 통계적 특성 변화는 Case 1에서 Case 7로 변동에
따라 강우 발생률의 증가와 지속시간의 감소로 본산은
감소하게 되며, 1차 자기상관계수 또한 작아지게 된다.

쇄국도와 철도도의 경우는 Case 1에서 Case 7로 변함에 따라 투영하는 것만큼 증가하는 경향이 있는 것으로 나타났다.

이와 같은 강우의 발생특성 변화에서 극한 상태일 경우, 즉 Set A의 Case 1과 Case 7, Set B의 Case 1과 Case 7은 각각 다음의 상황을 나타낼 수 있다. 먼저 Set A의 Case 1은 작은 강우강도로 긴 지속시간에 걸쳐 발생하는 상황을 나타낼 수 있으며 Case 7은 둔발 호우 사상의 일련의 시간에 많은 비가 발생하는 경우로 강우가 발생하는 경우를 나타낼 수 있다. Set B의 Case 1은 강우발생률이 매우 작아 강우의 집중성향 이 매우 커지므로 강우가 한번 발생하게 되면 지속시간이 긴 강우가 발생하는 경우이며, Case 7은 둔발 지속시간에 걸쳐 강우가 매우 빈번하게 발생하는 경우를 나타낸다. 따라서 Set A의 Case 1과 Set B의 Case 7은 각각의 관리가 수치로 확보 측면에서의 문제가 약한 수치로 확보 측면에서의 문제를 약한 수 있는 경우의 특성이 있다.

공교롭게도 이 두 가지의 경우가 기후 변화에 따라서 발생 가능한 강우의 패턴이 되므로, (염상 등, 2002; 김용래 등, 2004), 황후 화천관광 수자원의 확보 측면에서 문제의 소지가 있을 가능성이 크다는 것을 판단할 수 있다.

3.2.3 강우의 특성 변화에 따른 확률밀도함수의 변화

이와 같은 특성은 발생강우의 확률밀도함수를 상대적으로 보다 두려하게 알 수 있다(Fig. 4). Set A에서 Case 1에서 Case 7로, Set B는 Case 7에서 Case 1로 변화함에 따라 강우의 확률밀도함수는 'O'로 접근하는 것을 알 수 있다. 강우의 확률밀도함수가 0으로 점점 집중되고 있다는 것은 무강수 확률이 증가한다는 것을 의미하는 것이기도 하며 강우의 변화특성이 커진다는 것을 의미하기도 한다. 반대의 경우는 강우가 점점 고르게 발생한다는 것을 의미한다.

Set A에서 Case 1의 경우는 0~10 mm 정도의 강우가 집중되어 있는 경향이 있다. 그러나 Case 7의 경우는 'O'로 강우가 집중되어 있지만 여전히 작은 강우가 0에서 큰 강우까지 고르게 분포되어 있음을 확인할 수 있다. 강우의 분포가 고르게 된다는 것은 큰 강우가 발생할 수 있는 확률이 증가한다는 것을 의미하기도 한다. Set B의 경우는 Case 1에서 Case 7로 변화함에 따라 Set A의 Case 7에서 Case 1로 변하는 경우와 비슷한 경향을 보이는 것을 확인할 수 있다. Fig. 4의 오른쪽 그림은 강우량의 갭격을 0.1 mm로 하여 1 mm까지만의 확률밀도함수를 나타낸 것이다.
3.3 유출모의

3.3.1 단위도

유출모의에 사용될 모형인 신형저수지 모형과 Nash 모형의 적용을 위하여 우선 각 유역에 대한 1시간 대표
단위도를 결정하였다. 설마천의 경우 시험유역의 운영 및 수문특성 조사 연구(한국건설기술연구원, 2002)에서 제시하고 있는 매개변수를, 소양강변유역의 경우는
최인하 등(2001)의 연구에서 추정된 매개변수를 사용하였다(Table 6, Fig. 5).

![Diagram](image)

(a) Selma experimental catchment (b) Soyang river basin

Fig. 5. One hour unit hydrograph

Table 6. Parameters of single linear reservoir model and Nash model for the Selma experimental catchment and the Soyang river basin

<table>
<thead>
<tr>
<th>Study area</th>
<th>Single linear reservoir model</th>
<th>Nash model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>Selma</td>
<td>8.186</td>
<td>5.988</td>
</tr>
<tr>
<td>Soyang</td>
<td>11.052</td>
<td>3.684</td>
</tr>
</tbody>
</table>
Fig. 5를 보면 소규모 유역인 성산천 유역의 경우는 선형지수지 모형과 Nash 모형의 단위도의 지폐시간에 있어서 큰 차이가 나지 않음을 알 수 있다. 즉, 소규모 유역의 경우는 선형지수지 모형이나 Nash 모형의 경우에 강하로 인한 유역의 응답이 비슷한 것이라고 판단된다. 그러나 소양강원 유역의 경우는 유역의 규모로 인하여 선형지수지의 개수를 1개로 가정하는 경우와 2개로 가정하는 경우의 단위도는 확연하게 차이가 난다. 이와 같은 단위도의 차이는 유출특성에서 영향을 미칠 것이라고 판단된다.

3.3.2 기본적인 통계적 특성
모의된 유출량에 대한 기본적인 통계적 특성론을 유역별로 계산하였다. Table 7과 Table 8에 시각화하였다. 모든 Case에 있어서 강우량은 보정되지 않은 경우 유출량을 모형에 따라 그리고 유역에 따라 같은 값을 가지게 된다. 그러나 분산, 왜곡도계수, 첨도계수, 1차 자기상관계수는 Case별 변환에 따라 다른 값을 가지게 되는데 대부분의 경우에 서와 유사한 변형 양상을 가지게 된다. 그러나 Set B의 경우는 강수에서 저장된 정보를 확인할 수 없었던 왜곡도계수와 첨도계수가 Case 1에서 Case 7로 변환에 따라 감소함을 보여준다. 통계적 특성론을 통과하여 결과는 Set A의 Case 7과 Set B의 Case 1의 경우에 서와 마찬가지로 변동성이 가장 큰 경우이며 따라서 수자원 관리에 따라 매우 어려운 문제들을 아기시킬 것으로 판단할 수 있다.

Table 7. Basic statistics of runoff for cases with different characteristics (Set A)

<table>
<thead>
<tr>
<th>Study Area</th>
<th>CASE</th>
<th>Mean (mm)</th>
<th>Variance (mm²)</th>
<th>Coef. Of Skewness</th>
<th>Coef. Of Kurtosis</th>
<th>Corr(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sel-ma</td>
<td>1</td>
<td>1.233</td>
<td>3.962</td>
<td>2.948</td>
<td>14.688</td>
<td>0.994</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.233</td>
<td>3.962</td>
<td>2.948</td>
<td>14.688</td>
<td>0.994</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.233</td>
<td>3.962</td>
<td>2.948</td>
<td>14.688</td>
<td>0.994</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.233</td>
<td>3.962</td>
<td>2.948</td>
<td>14.688</td>
<td>0.994</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.233</td>
<td>3.962</td>
<td>2.948</td>
<td>14.688</td>
<td>0.994</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.233</td>
<td>3.962</td>
<td>2.948</td>
<td>14.688</td>
<td>0.994</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.233</td>
<td>3.962</td>
<td>2.948</td>
<td>14.688</td>
<td>0.994</td>
</tr>
<tr>
<td>So-yang</td>
<td>1</td>
<td>288,612</td>
<td>277,889</td>
<td>3.214</td>
<td>17.259</td>
<td>0.943</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>288,618</td>
<td>290,402.8</td>
<td>3.067</td>
<td>21.877</td>
<td>0.911</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>288,630</td>
<td>303,600.1</td>
<td>3.188</td>
<td>37.994</td>
<td>0.984</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>288,629</td>
<td>364,676.9</td>
<td>5.294</td>
<td>47.013</td>
<td>0.975</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>288,631</td>
<td>378,127.8</td>
<td>4.572</td>
<td>52.580</td>
<td>0.965</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>288,633</td>
<td>383,741.4</td>
<td>5.271</td>
<td>55.787</td>
<td>0.959</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>288,623</td>
<td>380,009.5</td>
<td>5.779</td>
<td>57.512</td>
<td>0.957</td>
</tr>
</tbody>
</table>

Table 8. Same as Table 7 (Set B)

<table>
<thead>
<tr>
<th>Study Area</th>
<th>CASE</th>
<th>Mean (mm)</th>
<th>Variance (mm²)</th>
<th>Coef. Of Skewness</th>
<th>Coef. Of Kurtosis</th>
<th>Corr(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sel-ma</td>
<td>1</td>
<td>1.294</td>
<td>31.125</td>
<td>8.757</td>
<td>109.590</td>
<td>0.994</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.311</td>
<td>23.637</td>
<td>8.242</td>
<td>101.281</td>
<td>0.990</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.294</td>
<td>11.982</td>
<td>8.643</td>
<td>70.251</td>
<td>0.980</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.297</td>
<td>7.058</td>
<td>5.156</td>
<td>44.354</td>
<td>0.968</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.292</td>
<td>3.827</td>
<td>4.313</td>
<td>35.243</td>
<td>0.954</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.301</td>
<td>2.159</td>
<td>5.000</td>
<td>28.382</td>
<td>0.946</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.324</td>
<td>1.390</td>
<td>3.256</td>
<td>25.031</td>
<td>0.940</td>
</tr>
<tr>
<td>So-yang</td>
<td>1</td>
<td>289,739</td>
<td>183,666.0</td>
<td>9.829</td>
<td>148,037</td>
<td>0.996</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>295,868</td>
<td>245,685.0</td>
<td>8.362</td>
<td>103,946</td>
<td>0.991</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>288,884</td>
<td>71694.8</td>
<td>7.529</td>
<td>88,588</td>
<td>0.985</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>288,629</td>
<td>364,676.9</td>
<td>5.294</td>
<td>47.013</td>
<td>0.975</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>294,290</td>
<td>179,568.1</td>
<td>4.054</td>
<td>30.255</td>
<td>0.965</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>296,865</td>
<td>112479.2</td>
<td>3.180</td>
<td>19.944</td>
<td>0.959</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>296,929</td>
<td>65742.9</td>
<td>3.066</td>
<td>22.863</td>
<td>0.957</td>
</tr>
</tbody>
</table>
3.3.3 확률밀도함수의 변화

다양한 강우특성에 대한 유출특성의 변화를 살펴보기 위하여 유출량에 대한 확률밀도함수를 유도하였다(Figs. 6 및 7). Figs. 6 및 7에서 유출 그래프는 좌축 그래프에서 3 m³/sec가지의 유출량을 0.1 m³/sec 구간으로 하여 나타낸 확률밀도함수이다. Fig. 6는 강우 발생률은 변화를 주지 않고 강우강도와 강우 지속시간에 변화를 주지 모형의 강우특성(Set A)에 대한 유출모의 결과의 확률밀도함수이다. 전반적으로 강우강도가 감소하고 강우지속시간이 증가함수록(Case 1→Case 7) 저유량의 확률이 감소하고 고유량의 확률이 증가하는 경향을 나타낸다. 즉, 확률밀도함수가 작지만 평활화(smoothing)된다는 것을 의미한다. 같은 유역에 대한 유출모의 자료와 하부모의 유출모형에 따라서 차이를 보이게 되는데, 이것은 단위모의 모양으로 인한 것으로 판단된다. 이러한 결과는 증발유역의 경우인 소양강류의 경우에 더욱 크게 나타나는데 전형적수시 모형과 Nash 모형을 이용한 유출량의 분포가 확인된 차이를 나타낸다.

Fig. 7은 강우강도에는 변화를 주지 않고, 강우발생률과 강우지속시간에 변화를 준 경우이다(Set B). 즉, 강우발생률이 증가(감소)함에 따라 강우지속시간은 감소(증가)하게 되며, 따라서 강우강도와 강우값이 빨게(길게) 나타나게 되는 균등하게(집중되어) 분포되는 특성을 나타내게 되는 것이다. 따라서 유출의 경우도 달라진 더 교차하게(집중되고) 분포하게 될 것이다. 유출 결과에서도 이를 확인할 수 있다. 강우발생률이 증가하는 경우는 확률밀도함수가 평활화 되고 그 반대의 경우는 집중성을 크게 나타낸다. 특히, 강우가 특정 강우 강도로 집중될수록 유출의 확률밀도함수는 'O'으로 더욱 집중되는 경향을 나타낸다. 이는 기후변화 등의 영향으로 강우의 집중성향이 커지는 경우 하천유량이 극단적으로 변주되어 하천관리에 어려움을 줄 수 있다는 것을 나타내는 결과이기도 하다. Set A에서의 마찬가지로 전형적수시 모형과 Nash 모형의 경우도 단위모의 특성상 집중점을는 Nash 모형의 경우가 조금 크지만 큰 차이는 보이지 않고 있다.

전반적으로, 강우의 지속시간이 증가하고 평균 강우강도가 작어지는 경우에는 강우의 분포도 점점 균등하게 분포하게 되고, 따라서 하전의 유량 또한 미소하나 마그에 상승하는 분포를 따르는 경향을 나타낸다. 그러나, 강우강도가 증가하고 지속시간이 줄어드는 경우에는 저유량 부분에 분포가 집중되는 경향을 알 수 있다. 또한 강수발생률의 증가는 거의 평활화 된 유출량의 확률밀도함수를 나타내게 되고, 반대로 강수발생률의 감소는 'O' 유량에 집중되는 형태의 확률밀도함수를 나타내게 된다.

Fig. 6. Sensitivity of outflow to the rainfall distributed with fixed rainfall amount(Set A)(continued)
Fig. 6. Sensitivity of outflow to the rainfall distributed with fixed rainfall amount (Set A)

Fig. 7. Sensitivity of outflow to the rainfall arrival rate with fixed rainfall amount (Set B) (continued)
마지막으로 소규모 유역의 경우와 중규모 유역의 경우 두 유형에 대해 깊은 강우의 특성을 부여한 경우를 비교해 보면서, 중규모 유역의 경우보다 소규모 유역의 경우가 강우특성의 변화에 보다 민감하게 반응하는 것을 파악할 수 있다. 즉, 단시간에 많은 양의 강우량이 나타나는 경우의 집중성이 증가하는 경우 경우의 중량 자체가 이에 비례하는 정도로 커지지 않는다면 하천의 건전화를 빠르게 진행될 수 있을 것이다.

4. 결 론

본 연구에서는 구형탈소모형을 이용하여 다양한 특성을 갖는 경우를 모의하고, 이들 설계수치 모형과 Nash 모형으로 유출해석하여 그 특성을 살펴보았다. 이를 인정 유역을 소규모 유역(설마천 유역) 및 중규모 유역(소양강댐 유역)으로 하여 유역 규모에 대한 민감성이 파악될 수 있도록 하였다. 그 결과 중량증량이 보존되는 경우라도 강우 발달률의 차이에 따라 유출의 특성이 크게 달라질음을 파악할 수 있었으나, 그 변화의 정도도 유역의 규모에 따라 다르게 나타남을 확인하였다. 특히, 소규모 유역의 경우에는 강수 시 하천유량 확보에 문제가 있을 수 있으며, 중규모 유역의 경우에는 홍수 시 홍수량 증가로 인한 문제점이 커질 수 있음을 파악할 수 있었다.

참 고 문 헌

이동률, 김용태, 유철성 (2004). “기후변화가 기상학적
가뭄과 홍수에 미치는 영향.” 한국수자원학회 논문집, 제37권, 제4호, pp. 315~328.

(논문번호:4-114/월수:2004.12.13/상사완료:2006.03.31)