고탁도침수에 의한 하천식물의 성장을 변화 연구
- 버드나무속 3종을 대상으로 -

Variation on the Growth Rate of Plants by Submersion of High Turbidity
- A Case Study on Salix Species -

김종태* / 김은진** / 강준구*** / 이홍구****
Kim, Jong Tae / Kim, Eun Jin / Kang, Joon Gu / Yeo, Hong Koo

Abstract

High turbidity submersion due to torrential downpour is one of the factors that influences the plant growth. This study is focused on analyzing the plant’s growth rate for Salix species such as gracilisyla, koreensis, glandulosa when these trees are waterlogged. The length of shoots for this control group in the natural state is 33.4% (gracilisyla), 24.3% (koreensis), 23.9% (glandulosa), however, they stopped growing in submersion. Compared to the leaf number of Salix species of this control group in the natural state, 144.5% (gracilisyla), 77.3% (koreensis), 40.3% (glandulosa) in the natural state 30 days, in 30 days submersion, the number of leaves is zero except koreensis. In the results of this experiment, Salix species stopped growing quickly when submerged. This study concludes that it is necessary to plant eco-friendly plants around the slope of the reservoir and dam where flooding takes place frequently.

Keywords : high turbid water, submersion, Salix species, leaf number, shoot

요 旨

집중호우에 의한 고탁도침수는 식물 성장에 영향을 줄 수 있는 요소 중 하나이다. 따라서 본 연구에서는 버드나무속 식물인 갯버들, 버드나무, 왕버들 이용하여 고탁도 침수 발생 시 식물 기 및 잎수를 파악하여 성장정도를 정량적으로 분석하였다. 식물 기에 대한 본 실험 결과 비침수 상태인 대조군에서는 30일 후 갯버들, 버드나무, 왕버들이 각각 33.4%, 24.3%, 23.9% 증가하였지만 고탁도의 침수가 시작되면 대부분 성장이 멈추었다. 잎수의 경우 대조군에서는 30일 후 갯버들, 버드나무, 왕버들이 각각 144.5%, 77.3%, 40.3% 증가하였지만 고탁도 침수가 30일 지속되면 버드나무를 제외한 식물의 잎수는 0개로 관찰되었다. 식물 성장에 대한 실험 결과 전반적으로 버드나무속 식물은 고탁도 침수가 지속되면 빈번한 시간 내 성장이 멈추는 것으로 나타났다. 이 결과는 햇빛 침수가 반복히 발생하는 일하후 및 상류하천 시면의 침환경적인 수목조성에 대한 기초자료가 될 것으로 판단한다.

핵심용어: 고탁도, 침수, 버드나무속, 잎수, 식물 기

* 고신제자, 한국건설기술연구원 하천실험센터 연구원 (e-mail: kjt98@kict.re.kr, Tel: 054-843-1805)
** 한국건설기술연구원 하천실험센터 연구원 (e-mail: ekjim@kict.re.kr)
*** 한국건설기술연구원 하천실험센터 수석연구원 (e-mail: jgkang02@kict.re.kr)
**** 한국건설기술연구원 하천실험센터 연구원 (e-mail: yeo917@kict.re.kr)

Research Fellow, River Experiment Center, KICT, Andong, 760-872, Korea
1. 서 론

이름절 검증호우에 의한 고탕수는 인간뿐만 아니라 수생태계에 직접적인 영향을 줄 수 있다(Parcer et al., 2006; Bibby and Webster Brown, 2003). 검증호우는 시간당 3 cm 이상이거나 일평 8 cm 이상, 또는 연강수량의 10% 정도가 허우에 발생하는 경우를 의미하며 수체 내 물질의 배출 이동을 동반하는 간격이 수생태계의 교란을 발생시킨다(Oh and Moon, 2003). 특히 쌍을 비롯한 세림질 퇴적암 지역의 홍수 및 검증호우는 장기간 탁수를 유발시키기도 한다.

인동 임하림의 경우 국내 대표 모래하천인 낙동강 위 치하고 있으며 환경적 식생은 갯벌, 갈대, 말풀류 등과 같은 전형적인 수면 식식이다(Woo et al., 2004). 또한 식물지역의 정방향식 퇴적하는 밀착 신파일층으로부터 중화 첨단석의 이하의 점포물질이 덮어 유원적으로 쉽게 접근되는 특성을 가지고 있으며 검증호우에 의한 지면은 탁수와 비정착을 반복되면서 임하림과 적응력의 식생은 대부분 유실되고 사내물 토양층은 물체 적응력을 노출되어 지속이 증가되고 있다. 이런 이유로 임하림의 경우 2003년 이전까지는 탁수와의 기준인 30 NTU 이상 탁수 발생 일수는 매년 1~3개월 이내였으나 2003년부터 2004년에 발전한 검증호우 및 대형으로 인해 탁수 발생시간은 최대 315일간 지속되었고, 탕수는 1,221 NTU(Nephelometric Turbidity Unit)까지 확연되었으며(Yum et al., 2007; Yum et al., 2008; Park et al., 2008) 임하림 하류 하천식물 피해 및 생태계 변화 등 심각한 문제가 발생하였다.

일반적으로, 수생식물의 경우 영양소 공급, 수업, 난류 등의 다른 요인이 아주 제한적이지 않았다면 주로 이용도(light availability)에 의하여 심장이 결정되므로 탁수의 지속 정도는 식생의 적·간접적으로 큰 영향을 미칠 수 있다. 특히 대형, 흙수, 분출 등에 의하여 탁수가 적극적으로 발생하는 데 및 호수에서는 식생에 의하여 토스 등의 부유 물질이 퇴적, 퇴적화가 정상화해 대하여 영양소 공급주 문제를 발생시키며 부유물질로 인한 문제가 증가해 물리적인 피해를 줄 수 있다(Havens, 2003; Nielsen, 2007). 또한 수용 내 탁수의 증가는 빛의 투과율을 감소시키며 푸랑크논이나 부유조류 평량성의 감소를 가져오며 이로 인해 대규모 침수식물의 감소는 부유토사에 의한 평량성 저해로 가서온다(Batut et al., 1992). 이런 이유로 현재 용수와 유량의 변화에 따른 양수생태계 연구는 계속 진행되어 왔으며, 특히 토양 발생 시 하천의 수질 변화, 녹조와 같은 조류 발생에 기인한 탁수 연구 등은 다양하게 진행되고 있다(Fringle et al., 1988; Park et al., 2002; Farve et al., 2004; Choo et al., 2006). 그러나 탁수 발생이 수생태계에 미치는 직접적인 영향 및 관계에 대한 연구는 미흡하며 주로 탁수 발생인원 및 자원비용과 지질 분석 등에 대한 연구들이 이루어지고 있다. 또한 고도도의 탁수발생이 하천과 후수 내 수생태계에 미치는 직접적인 영향에 대한 연구의 필요성이 대두되고 있지만 수질에 따른 폐장 크론 및 이유에 대한 반응 분석이 대부분이며 강제 탁수 발생 및 식물환경 재편의 어려움 등으로 대부분 소규모로 연구가 진행되고 있다.

낙동강 대표 하천식물인 빌나무속 식물은 짚구상태의 청수가 일정기간 지속되더라도 성장에 큰 장애가 없는 식물 이지만 탁수에 의한 투과광 감소 및 평량성 저해는 식생의 성장에 영향을 줄 수 있으며 부유토사가 식물체에 퇴적되면서 물리적인 이유로 성장의 감소를 가져오기도 한다. 따라서 본 연구에서는 기후변화가 동반한 검증호우에 의한 탁수 청수 발생 시 하천식물의 성장 가능성을 정량적으로 파악하는 것이 목적이며 이를 위해 장기간 탁수가 발생한 임하림 상류 하천에서 동양식물을 채취하여 대형 수조에서 강재 탁수를 발생시킨 후 식생의 청수차를 10일, 20일, 30일 동안 청수가 식물에 미치는 영향에 대해 관찰하였다. 실험을 위한 식물은 우리나라 주요 빌나무속 3종인 갈비등(Salix gracilistyla), 빌나무(Salix koreana), 갈비등(Salix glansulcosa)로 선정하였으며 탁수 발생 시 성장도를 청수시간에 따라 분석하였으며 비정상의 대조군(Control Group)과 성장하였다.

2. 시료채취 및 실험방법

2.1 시료채취

임하림의 성장단계는 경상북도 성장에 의하여 수입되는 방면의 경상북도 성장단계로 임하림은 응용천전의 충돌에 따라 탁수 발생을 위한 시료 채취는 탁수 지속시간이 가장 큰 반면적 성장하천에서 실시하였다. 시료채취 지역은 성장단계의 토양이 발달하지 않아 탁수 발생시 퇴적물은 적층 및 관찰이 발달하고 있으며 특히 도수증증성의 세균과 트랜스미 접촉 유무의 차이로 퇴적물 발생원으로 판단된다.

2.2 실험방법

본 연구에서는 검증호우로 인한 토양 유실 및 젖도질 미생물의 이동 등을 방지하기 위해 검수기에 시료를 채취하였다. 강제특수 발생을 위한 수조는 1 m3 크기로 제작하였으며 하천식물은 우리나라 대표 빌나무속 식물인 갈
비도, 바드나무, 갯버들을 선택하여 고덕도 참수에 대한 반응을 분석하였다(Fig. 1). 강저수기는 총분석(100) 후 각 수조별 토양 20 kg를 이용해 반응시키며 초기 토료는 1,000 NTU로 측정되었다. 토료는 참전에 의해 감소하였으며 시간별 토양 변화 및 정관은 Table 1과 같다. 실험에 사용한 모든 식물들은 2년생 무을 30 cm 크기로 원단하여 삼복 및 정적기간 후 실험에 사용하였다. 연구지역인 염기요 삼복한정의 경우 30 mm 이상 강수 시 하천식물이 참수하는 경우가 발생하므로 10년 동안 강수량을 분석하여 30 mm 이상 강수일수를 계산하여 각 식물의 참수기간은 10일, 20일, 30일로 결정하였으며 정확한 결과 분석을 위해 각 참수기간별 5개체를 이용하였다. 각 작물의 10일 참수 후 적용된 이전 연구지역(Kim et al., 2013)를 참고하였으며 고흙도 토양에 참수되기 전과 각 기간별 참수 후로 나타난 식물을 키(length of shoot)와 잎수(leaf number)를 분석하여 비침수의 대조군과 비교하였다.

3. 고덕도 참수실험

3.1 갯버들 참수실험

간버들의 경우 고덕도 참수는 상장에 큰 영향을 미치는 것으로 나타났다(Tables 2 and 3, Fig. 2). Table 2의 경우 고덕도의 참수가 각각 10일(T10), 20일(T20), 30일(T30) 지속되었을 경우 갯버들의 성장을 나타내며 Table 3은 비침수 상태대조군에 대한 결과로써 참수 상태에서 각각 10일(C10), 20일(C20), 30일(C30) 후 갯버들의 성장에 대한 결과이다. 갯버들은 고덕도 참수가 30일 지속되면 식물 줄기 끝부분이 약해서 부리지는 현상이 모든 개체에서 관찰되었다. 총정 결과 식물 키의 경우 초기성 대비 대비 평균 95.7%였으며 특히 T30-2의 경우 줄기 길부분이 부러져 키의 10.7%가 감소하였다. 일부 참수시 간이 10일 이상 지속되면 뿌리 및 잎에 위축되는 경우를 무게 상으로 인해 모두 일어진 것으로 나타났다(Fig. 2). 고덕도 참수 그룹에 비해 같은 크기를 충전 후 정적기간을 가진 갯버들 대조군의 경우 키 및 잎수가 30일 후 각각 33.4%, 144.5% 성장한 것으로 나타났다. 특히 잎수의 경우 최대 230.8%(초기 대비 330.8%) 증가하는 개체(C30-1)도 관찰되었으며 잎의 길이도 크게 증가하는 것으로 나타났다.

3.2 바드나무 참수실험

바드나무의 경우 고덕도의 참수가 상장에 영향을 미치는 것으로 관찰되었지만 갯버들에 비해 적은 것으로 나타났다(Tables 4 and 5, Fig. 3). Table 4의 경우 고덕도의 참수가 각각 10일(T10), 20일(T20), 30일(T30) 지속되었을 경우 바드나무의 성장 정도를 나타내며 Table 5는 대조군에 대한 결과로서 참수 상태에서 각각 10일(C10), 20일(C20), 30일(C30) 후 바드나무의 성장에 대한 결과이다. 고덕도의 참수가 30일 지속되면 바드나무 키의 경우 T30-3에서 길이가 부러져 3.4% 감소하였으나 나머지 4개체에서는 미세한 성장을 보임 전체 평균 성장률은 초기성 대비 100.5%로 나타났다. 잎수의 경우 참수가 10일 지속되면 초기상태 대비 82.8%로써 17.7% 감소하였으며 20일 지속되면 80.6% 감소하였다. 참수가 30일 지속되면 뿌리 및 잎에 위축되는 경우를 무게 등으로 인해 83.6%

(a) Condition of Initial
(b) 30 Days later

Fig. 1. Photograph of Water Tank by Submersion Periods

<table>
<thead>
<tr>
<th>Table 1. Change of Turbidity In Water Tank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity (NTU)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Salix gracilis</td>
</tr>
<tr>
<td>Salix koreensis</td>
</tr>
<tr>
<td>Salix glandulosa</td>
</tr>
<tr>
<td>Ave.</td>
</tr>
</tbody>
</table>
Table 2. Comparison between initial Value and Experimental Result of Gracillistyla High Turbidity Group

<table>
<thead>
<tr>
<th></th>
<th>Length of Shoot</th>
<th>Leaf Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial (cm)</td>
<td>Experimental result (cm)</td>
</tr>
<tr>
<td>T10-1</td>
<td>48.1</td>
<td>48.6</td>
</tr>
<tr>
<td>T10-2</td>
<td>41.2</td>
<td>41.9</td>
</tr>
<tr>
<td>T10-3</td>
<td>41.0</td>
<td>43.5</td>
</tr>
<tr>
<td>T10-4</td>
<td>33.0</td>
<td>36.0</td>
</tr>
<tr>
<td>T10-5</td>
<td>26.0</td>
<td>25.2</td>
</tr>
<tr>
<td>Ave.</td>
<td>37.9</td>
<td>39.0</td>
</tr>
<tr>
<td>T20-1</td>
<td>35.0</td>
<td>36.0</td>
</tr>
<tr>
<td>T20-2</td>
<td>37.2</td>
<td>36.2</td>
</tr>
<tr>
<td>T20-3</td>
<td>25.0</td>
<td>24.7</td>
</tr>
<tr>
<td>T20-4</td>
<td>38.1</td>
<td>37.5</td>
</tr>
<tr>
<td>T20-5</td>
<td>37.4</td>
<td>37.5</td>
</tr>
<tr>
<td>Ave.</td>
<td>34.5</td>
<td>34.4</td>
</tr>
<tr>
<td>T30-1</td>
<td>33.3</td>
<td>32.2</td>
</tr>
<tr>
<td>T30-2</td>
<td>30.0</td>
<td>26.8</td>
</tr>
<tr>
<td>T30-3</td>
<td>38.1</td>
<td>36.7</td>
</tr>
<tr>
<td>T30-4</td>
<td>38.4</td>
<td>37.4</td>
</tr>
<tr>
<td>T30-5</td>
<td>36.0</td>
<td>35.5</td>
</tr>
<tr>
<td>Ave.</td>
<td>35.2</td>
<td>33.7</td>
</tr>
</tbody>
</table>

Table 3. Analysis of Gracillistyla in Control Group

<table>
<thead>
<tr>
<th></th>
<th>Length of Shoot</th>
<th>Leaf Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial (cm)</td>
<td>Experimental result (cm)</td>
</tr>
<tr>
<td>C10-1</td>
<td>32.5</td>
<td>37.7</td>
</tr>
<tr>
<td>C10-2</td>
<td>38.0</td>
<td>38.6</td>
</tr>
<tr>
<td>C10-3</td>
<td>36.0</td>
<td>39.4</td>
</tr>
<tr>
<td>C10-4</td>
<td>30.7</td>
<td>32.7</td>
</tr>
<tr>
<td>C10-5</td>
<td>28.1</td>
<td>36.7</td>
</tr>
<tr>
<td>Ave.</td>
<td>33.1</td>
<td>37.0</td>
</tr>
<tr>
<td>C20-1</td>
<td>32.5</td>
<td>41.2</td>
</tr>
<tr>
<td>C20-2</td>
<td>38.0</td>
<td>41.4</td>
</tr>
<tr>
<td>C20-3</td>
<td>36.0</td>
<td>42.3</td>
</tr>
<tr>
<td>C20-4</td>
<td>30.7</td>
<td>37.5</td>
</tr>
<tr>
<td>C20-5</td>
<td>28.1</td>
<td>42.9</td>
</tr>
<tr>
<td>Ave.</td>
<td>33.1</td>
<td>41.1</td>
</tr>
<tr>
<td>C30-1</td>
<td>32.5</td>
<td>44.2</td>
</tr>
<tr>
<td>C30-2</td>
<td>38.0</td>
<td>43.8</td>
</tr>
<tr>
<td>C30-3</td>
<td>36.0</td>
<td>42.5</td>
</tr>
<tr>
<td>C30-4</td>
<td>30.7</td>
<td>40.2</td>
</tr>
<tr>
<td>C30-5</td>
<td>28.1</td>
<td>46.8</td>
</tr>
<tr>
<td>Ave.</td>
<td>33.1</td>
<td>43.5</td>
</tr>
</tbody>
</table>
Table 4. Comparison between Initial Value and Experimental Result of Koreensis (High Turbidity Group)

<table>
<thead>
<tr>
<th></th>
<th>Length of Shoot</th>
<th>Leaf Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial (cm)</td>
<td>Experimental result (cm)</td>
</tr>
<tr>
<td>T10-1</td>
<td>52.1</td>
<td>54.2</td>
</tr>
<tr>
<td>T10-2</td>
<td>61.0</td>
<td>61.3</td>
</tr>
<tr>
<td>T10-3</td>
<td>54.6</td>
<td>54.3</td>
</tr>
<tr>
<td>T10-4</td>
<td>51.7</td>
<td>54.0</td>
</tr>
<tr>
<td>T10-5</td>
<td>40.1</td>
<td>42.9</td>
</tr>
<tr>
<td>Ave.</td>
<td>51.9</td>
<td>53.3</td>
</tr>
<tr>
<td>T20-1</td>
<td>49.3</td>
<td>51.2</td>
</tr>
<tr>
<td>T20-2</td>
<td>59.5</td>
<td>60.7</td>
</tr>
<tr>
<td>T20-3</td>
<td>47.1</td>
<td>48.8</td>
</tr>
<tr>
<td>T20-4</td>
<td>47.6</td>
<td>48.1</td>
</tr>
<tr>
<td>T20-5</td>
<td>62.0</td>
<td>63.0</td>
</tr>
<tr>
<td>Ave.</td>
<td>53.1</td>
<td>54.4</td>
</tr>
<tr>
<td>T30-1</td>
<td>63.0</td>
<td>64.5</td>
</tr>
<tr>
<td>T30-2</td>
<td>55.9</td>
<td>56.1</td>
</tr>
<tr>
<td>T30-3</td>
<td>55.7</td>
<td>53.8</td>
</tr>
<tr>
<td>T30-4</td>
<td>49.6</td>
<td>50.0</td>
</tr>
<tr>
<td>T30-5</td>
<td>60.2</td>
<td>61.5</td>
</tr>
<tr>
<td>Ave.</td>
<td>56.9</td>
<td>57.2</td>
</tr>
</tbody>
</table>

Fig. 2. Comparison of Gracilisyle on High Turbidity Group and Control Group
Table 5. Analysis of *Koreensis* in Control Group

<table>
<thead>
<tr>
<th></th>
<th>Length of Shoot</th>
<th>Leaf Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial (cm)</td>
<td>Experimental result (cm)</td>
</tr>
<tr>
<td>C10-1</td>
<td>55.0</td>
<td>64.6</td>
</tr>
<tr>
<td>C10-2</td>
<td>44.2</td>
<td>53.3</td>
</tr>
<tr>
<td>C10-3</td>
<td>53.1</td>
<td>61.9</td>
</tr>
<tr>
<td>C10-4</td>
<td>55.4</td>
<td>65.1</td>
</tr>
<tr>
<td>C10-5</td>
<td>55.7</td>
<td>63.4</td>
</tr>
<tr>
<td>Ave.</td>
<td>52.7</td>
<td>61.7</td>
</tr>
<tr>
<td>C20-1</td>
<td>55.0</td>
<td>66.0</td>
</tr>
<tr>
<td>C20-2</td>
<td>44.2</td>
<td>54.9</td>
</tr>
<tr>
<td>C20-3</td>
<td>53.1</td>
<td>63.4</td>
</tr>
<tr>
<td>C20-4</td>
<td>55.4</td>
<td>68.5</td>
</tr>
<tr>
<td>C20-5</td>
<td>55.7</td>
<td>67.7</td>
</tr>
<tr>
<td>Ave.</td>
<td>52.7</td>
<td>64.1</td>
</tr>
<tr>
<td>C30-1</td>
<td>55.0</td>
<td>68.0</td>
</tr>
<tr>
<td>C30-2</td>
<td>44.2</td>
<td>55.6</td>
</tr>
<tr>
<td>C30-3</td>
<td>53.1</td>
<td>64.0</td>
</tr>
<tr>
<td>C30-4</td>
<td>55.4</td>
<td>70.5</td>
</tr>
<tr>
<td>C30-5</td>
<td>55.7</td>
<td>69.2</td>
</tr>
<tr>
<td>Ave.</td>
<td>52.7</td>
<td>65.5</td>
</tr>
</tbody>
</table>

Fig. 3. Comparison of *Koreensis* on High Turbidity Group and Control Group

3.3 Wangbi chord experiment

Wangbi chord experiment was conducted to examine the effect of high turbidity on the growth of *Koreensis*. The results showed that the growth of *Koreensis* was significantly reduced in the high turbidity group compared to the control group (Table 6 and Fig. 4). The leaves of *Koreensis* in the high turbidity group were smaller and had fewer leaflets than in the control group. The stem and root growth was also affected, leading to decreased overall growth. The results suggest that high turbidity has a negative impact on the growth of *Koreensis*.
Table 6. Comparison between Initial Value and Experimental Result of *Glandulosa*(High Turbidity Group)

<table>
<thead>
<tr>
<th></th>
<th>Length of Shoot</th>
<th>Leaf Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial (cm)</td>
<td>Experimental result (cm)</td>
</tr>
<tr>
<td>T10-1</td>
<td>47.0</td>
<td>47.3</td>
</tr>
<tr>
<td>T10-2</td>
<td>38.3</td>
<td>38.0</td>
</tr>
<tr>
<td>T10-3</td>
<td>37.0</td>
<td>37.2</td>
</tr>
<tr>
<td>T10-4</td>
<td>53.0</td>
<td>53.6</td>
</tr>
<tr>
<td>T10-5</td>
<td>54.1</td>
<td>54.1</td>
</tr>
<tr>
<td>Ave.</td>
<td>45.9</td>
<td>46.0</td>
</tr>
<tr>
<td>T20-1</td>
<td>35.0</td>
<td>35.2</td>
</tr>
<tr>
<td>T20-2</td>
<td>46.2</td>
<td>46.7</td>
</tr>
<tr>
<td>T20-3</td>
<td>51.0</td>
<td>49.0</td>
</tr>
<tr>
<td>T20-4</td>
<td>49.8</td>
<td>52.1</td>
</tr>
<tr>
<td>T20-5</td>
<td>51.8</td>
<td>52.0</td>
</tr>
<tr>
<td>Ave.</td>
<td>46.8</td>
<td>47.0</td>
</tr>
<tr>
<td>T30-1</td>
<td>42.3</td>
<td>42.1</td>
</tr>
<tr>
<td>T30-2</td>
<td>46.0</td>
<td>46.0</td>
</tr>
<tr>
<td>T30-3</td>
<td>25.0</td>
<td>25.4</td>
</tr>
<tr>
<td>T30-4</td>
<td>42.8</td>
<td>43.7</td>
</tr>
<tr>
<td>T30-5</td>
<td>42.0</td>
<td>42.2</td>
</tr>
<tr>
<td>Ave.</td>
<td>39.6</td>
<td>39.9</td>
</tr>
</tbody>
</table>

Table 7. Analysis of *Glandulosa* in Control Group

<table>
<thead>
<tr>
<th></th>
<th>Length of Shoot</th>
<th>Leaf Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial (cm)</td>
<td>Experimental result (cm)</td>
</tr>
<tr>
<td>C10-1</td>
<td>40.3</td>
<td>47.0</td>
</tr>
<tr>
<td>C10-2</td>
<td>59.7</td>
<td>67.0</td>
</tr>
<tr>
<td>C10-3</td>
<td>42.2</td>
<td>55.3</td>
</tr>
<tr>
<td>C10-4</td>
<td>42.0</td>
<td>48.0</td>
</tr>
<tr>
<td>C10-5</td>
<td>44.4</td>
<td>52.0</td>
</tr>
<tr>
<td>Ave.</td>
<td>45.7</td>
<td>53.9</td>
</tr>
<tr>
<td>C20-1</td>
<td>40.3</td>
<td>48.6</td>
</tr>
<tr>
<td>C20-2</td>
<td>59.7</td>
<td>72.0</td>
</tr>
<tr>
<td>C20-3</td>
<td>42.2</td>
<td>56.8</td>
</tr>
<tr>
<td>C20-4</td>
<td>42.0</td>
<td>49.1</td>
</tr>
<tr>
<td>C20-5</td>
<td>44.4</td>
<td>54.7</td>
</tr>
<tr>
<td>Ave.</td>
<td>45.7</td>
<td>56.2</td>
</tr>
<tr>
<td>C30-1</td>
<td>40.3</td>
<td>49.0</td>
</tr>
<tr>
<td>C30-2</td>
<td>59.7</td>
<td>72.0</td>
</tr>
<tr>
<td>C30-3</td>
<td>42.2</td>
<td>57.0</td>
</tr>
<tr>
<td>C30-4</td>
<td>42.0</td>
<td>49.3</td>
</tr>
<tr>
<td>C30-5</td>
<td>44.4</td>
<td>55.5</td>
</tr>
<tr>
<td>Ave.</td>
<td>45.7</td>
<td>56.6</td>
</tr>
</tbody>
</table>
(C10), 20일(C20), 30일(C30) 후 캐비의 성장에 대한 결과이다. 고탁도의 청수가 30일 지속되면 캐비의 키의 경우 T30-1에서 줄기가 높이 0.5% 감소하였으나 나머지 4개체에서는 미세한 성장을 보여 전체 평균 성장을 20% 동일하게 나타냈다. 임수의 경우 10일 이후 5개체 평균 초기 대비 59.0%로 41.0% 감소하였지만 20일 이상 임수가 지속되면 임부 및 임부에 의하여 5개체 모두 10% 성장하여 0개로 나타났다(Fig. 4). 고탁도 청수 그룹에 비해 같은 크기로 정단 후 경과기간을 가진 캐비들 대조군의 경우 키 및 임수가 30일 후 각각 23.9%, 40.3% 성장한 것으로 나타났다.

4. 분석 및 고찰

4.1 고탁도의 청수가 브드나무속 식물에 미치는 영향

우리나라 대표 브드나무속 3종인 캐비, 바드나무, 쌍디비 등의 비침수 상태에서 평균 키 성장률은 30일 경과 후 각각 33.4%, 24.3%, 23.9% 증가하여 캐비들의 성장률이 가장 높았으며 바드나무와 쌍디비는 비슷한 것으로 나타났다.

고탁수 점수상태에서의 평균 키 성장률의 경우 전반적으로 미세한 성장을 보였으나 초기상태에 비교해 변화가 거의 없는 것으로 판명되었다 (Table 8). 특히 캐비의 경우 점수기간이 30일이 지나면 모든 재제의 줄기 끝부분이 높이 41.0% 감소하였으며, 이는 하천 식물이 고탁도의 청수가 발생할 경우 심각한 스트레스를 받게 되는 것을 의미하며 점수상태가 지속적으로 유지된다면 식물에 심각한 피해를 줄 수 있을 것으로 판단한다. Figs. 5와 6은 대조군과 고탁도 점수기간 및 점수기에 따른 바드나무속 식물들의 키 성장률을 보여주는 그림으로 세 캐비들은 대조군인 비점수 상태에서 성장률이 가장 높았지만 고탁도 점수가 지속되면 줄기 성장률이 가장 낮은 것으로 판명되어 점수에 가장 민감한 것으로 나타났다.

![Fig. 4. Comparison of Glandulosa on High Turbidity Group and Control Group](image)

| Table 8. Variation of Length of Shoot in the Control Group and High Turbidity Group |
|--|--|
| **Days** | **Control Group (%)** | **High Turbidity Group (%)** |
| | Gracilistyla | Koreensis | Glandulosa | Gracilistyla | Koreensis | Glandulosa |
| 0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 10 | 112.8 | 117.2 | 118.2 | 103.0 | 103.1 | 100.3 |
| 20 | 125.6 | 121.7 | 123.2 | 99.5 | 102.4 | 100.6 |
| 30 | 133.4 | 124.3 | 123.9 | 95.7 | 100.5 | 100.7 |
4.2 고탁도의 침수가 버드나무속 식물 잎수에 미치는 영향

잎수의 경우 키와 마찬가지로 식물 종류와 잎수시간에 따라 결과가 다를 것으로 나타났다(Table 9). 대조군의 경우 30일 경과 후 갯버들, 버드나무, 참바다는 각각 144.5%, 77.3%, 40.3% 증가한 것으로 관찰되었다. 고탁수 침수상태에서의 갯버들 잎수는 침수기간이 10일 이상이 되면 모든 재배에서 0개였으며 참바들은 10일 침수 후 초기상태 대비 59.0%의 잎수가 확인되었지만 20일 후 잎수는 0개였다. 버드나무는 고탁도 침수 30일 후에도 초기 대비 16.4% 가 남아있는 것으로 나타나 실험식물 중 탁도에 가장 큰 영향을 가진 것으로 나타났다. Figs. 7 and 8은 대조군과 고탁도의 침수시간 및 탁도에 따른 식물들의 잎수변화를 보여주는 그래프로 대조군에서는 갯버들의 잎수 증가율이 초기대비 244.5%로써 최대였으며 고탁도 침수에 대한 피해는 버드나무가 가장 적은 것으로 나타났다.

| Table 9. Variation of Leaf Number in the Control Group and High Turbidity Group |
|---------------------------------|-----------------|-----------------|-----------------|
| Days (Days) | Control Group (%) | High Turbidity Group (%) |
| | Gracilistyla | Koreensis | Glandulosa | Gracilistyla | Koreensis | Glandulosa |
| 0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 10 | 163.2 | 137.8 | 122.5 | 0.0 | 82.3 | 59.0 |
| 20 | 229.3 | 161.6 | 132.9 | 0.0 | 19.4 | 0.0 |
| 30 | 244.5 | 177.3 | 140.3 | 0.0 | 16.4 | 0.0 |
5. 결 론

태풍 및 집중호우는 고덕도의 청수를 발생시켜 식수지 및 하천 제방 식물의 성장에 영향을 미친다. 따라서 본 연구에서는 국내 대표적인 하천식물인 갯버들, 바드나무, 펭버들을 이용하여 비침수의 대조군과 고덕도의 청수가 발생하였을 경우 키 및 염수를 관찰하여 성장고를 비교하였 다. 연구결과를 요약하면 다음과 같다.

1) 청수기간은 10일, 20일, 30일로 나누었으며 초기 상태와 각각 비교하였다. 식물 키에 대한 분석결과 대조군에서는 30일 후 갯버들, 바드나무, 펭버들은 각각 33.4%, 24.3%, 23.9% 증가하였지만 30일 동안 고덕도의 청수가 발생하였던 갯버들은 모든 개체에서 줄기가 부러져 초기 대비 43% 감소하였다. 바드나무와 펭버들은 각각 1개체의 줄기가 부러져 감소하였으며 초기 대비 평균 0.5%, 0.7%의 증가를 보였지만 성장이 매우 낮은 것으로 나타났다. 특히 갯버들의 경우 비침수의 대조군에서는 성장이 가장 높았지만 고덕도의 청수가 발생하여 식물 줄기가 약해져 부러지는 경우가 대부분이며 이로 인해 키 성장률의 감소가 나타났다.

2) 염수에 대한 분석결과 대조군에서는 30일 후 갯버들, 바드나무, 펭버들은 각각 144.5%, 77.3%, 40.3% 증가 하였지만 고덕도의 청수가 30일 진행되면 바드나무의 경우 83.6% 감소하였으며 갯버들이 창버들의 염 수는 0개로 나타났다. 갯버들과 창버들은 대조군에서 는 성장이 매우 높았지만 고덕도의 청수가 발생하면 빨른 시간 내 염수가 감소하는 것으로 나타났다.

3) 실험 결과 터마가 저속적으로 30일 이상 유지되면 바드나무 식물의 경우 임해부에 부유물질이 많이 고 및 터마를 막아 광합성이 저해되어 식물의 성장에 심각한 피해를 주는 것으로 판단된다.

따라서 이 결과는 대부분 식생의 유실로 인해 청수가 반복히 발생하는 임해호 및 성유류 등의 사면에 친환경적인 수목조성을 위한 식물 선정 시 터마가 강한 바드나무가 환경에 이상함을 의미한다. 항후 식물성장에 영향을 미치는 수질조건의 영향인자에 대한 비교뿐만 아니라 터마 변화에 따른 빌의 두경례 식물 성장의 상관관계를 분석한 결과변화에 대응하는 식물생존을 위한 대책 수립이 될 것으로 판단한다.

감사의 글

본 연구는 한국건설기술연구원의 기관고유 연구사업 (13주.9) 연구비지원에 의해 수행되었습니다.

References

논문번호: 13-044 접수: 2013.05.07
수정일자: 2013.07.12/07.22/08.05 심사완료: 2013.08.05