Effects of the Stand-off Distance on the Weld Strength in Magnetic Pulse Welding

Sungwook Kim*, Changkeun Chun* and Sookwan Kim*

*Welding Research Center, RIST

*Corresponding author: sungwook@rist.re.kr

(Received April 21, 2008; Revised May 19, 2008; Accepted December 9, 2008)

Abstract

Although Magnetic Pulse Welding (MPW) is not a recently developed technique, it has gained the attention of the automotive industry. MPW has become an accepted welding process because it enables the joining of similar, and dissimilar materials, with a very short cycle time, without the need for filler metal and gases.

In this study, the effect of the stand-off distance on the weld strength has been investigated. The compressive strength of the MPW joints was evaluated using UTM. The interface of weld, IMC composition and morphology were studied by SEM and EDS.

It was concluded that the stand-off distance and the voltage are the main parameters influencing the strength of weld. In case of too high stand-off distance, it influenced harmful effect because of the resistance of deformation.

Key Words: Magnetic pulse welding, Stand-off distance, Weld strength, Compressive strength

1. 서 론

최근 대기오염 및 지구온난화에 대한 문제가 계속 제기됨에 따라 수송기기의 중량을 줄임으로써 에너지를 절감하여 이러한 문제를 해결하고자 하는 노력이 진행 중에 있다. 수송기기의 경량화는 기존의 소재를 알루미늄이나 마그네슘과 같은 경량소재로 대체함으로써 얻을 수 있다. 하지만 경량소재를 기존의 용접방법으로 적용시 내부에 기공이나 균열과 같은 결함이 발생하여 철강 대비 동등한 수준의 용접성을 달성하기 힘들며, 특히 철강과 경량소재의 이중용접이 필요한 경우도 있어 이를 해결할 수 있는 용접공정이 필요하다. 이중재질의 소재를 용접하는 데 있어 한가지 문제점은 용접이 서로 다르다는 것이다. 따라서 소재를 용접시키지 않고 고장 상태로 접합하는 공정이 필요하다.
앞, 방전시간, 코일형상 등의 잔차적인 요소와 소재종류, 접합간격, 전기조건도, 강도, 연선율, 표면상태와 같은 소재적인 요소들로 돼 있는 데 이들 인사는 여러 연구자들에 의해 기초적인 관점에서 연구되어왔다.

한편, 본 연구에서는 실용적 접근의 관점에서 고장도 상용 핵융을 이용하여 전자기필스융접 시 접합간격이 용접강도에 미치는 영향에 대하여 파악하고자 하였다.

2. 실험방법

전자기필스융접을 위해 본 연구에서는 이스라엘 PULSAR에서 도입한 Fig. 1에서와 같은 전자기필스융접장치(MPW 25/9)를 이용하여 용접을 실시하였다. 전자기필스융접장치는 25kJ급으로, 최대 인가전압은 9kV, 최대 필스전류는 50kA, 28kHz이다.

전자기필스융접 시 인가전압에 따른 필스파형은 Fig. 2에서와 같은 로고스키(Rogovski) 코일을 장착하여 오실로스코프를 이용하여 파악하였다. 로고스키 코일은 반경이 작은 코일을 토러스상의 결연율에 붙여 감아서 만드는 것으로 피측정 전류에 의하여 만들어지는 자동의 변화를 검출하여 전류를 구한다. 본 연구에서는 전자기필스융접 코일의 출력단에 로고스키 코일을 감았으며, 오실로스코프에는 이더넷을 적용하여 연결하였다.

접합간격에 따른 용접강도 파악을 위해 외부소재는 외경 45mm, 두께 1.5mm의 알루미늄 A6063 파이프, 내부소재는 알루미늄 A6061 및 스테인(C1221)을 사용하였으며, 내부소재의 형상은 Fig. 3에서와 같이 기능적으로 각각 A: 내부저부, B: 용접구간, C: 저고저부로 이루어져도 가공하였다. 접합간격(외부파이프와 내부파이프 간 간격)은 내부저부의 직경을 17~19mm로 가공하여 1.5~2.5 mm로 변화시켰다.

가공된 파이프는 Fig. 4에서와 같이 전자기필스융접에 전에 정확히 위치시켜 접합간격 병, 소재 조합별로 4.5~6.5kV의 인가전압 범위에서 용접을 실시하였다. Table 1은 본 실험결과를 정리한 것이다.

유결변 시편은 표면의 변화를 파악하기 위해 접합간격 및 인가전압별 변형폭을 3회 평균하여 측정하였으며, 용접강도는 단면시험주(UTM, 50kN)를 이용하여 5mm/min의 속도로 압축강도로 3회 평균하여 평가하였다.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Welding parameters for MPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer pipe</td>
<td>Inner pipe</td>
</tr>
<tr>
<td>Aluminum</td>
<td>Aluminum</td>
</tr>
<tr>
<td>Alloy (A6061)</td>
<td>Alloy (A6063)</td>
</tr>
<tr>
<td>Pure Copper</td>
<td>Pure Copper</td>
</tr>
<tr>
<td>(C1221)</td>
<td>(C1221)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1 Magnetic Pulse Welding Machine

Fig. 2 Rogovski coil and oscilloscope for pulse detecting

Fig. 3 Specimens for MPW test. (a) Outer pipe (b) Inner pipe
3. 실험결과 및 고찰

3.1 펄스영상

응집시 순간적인 전류는 Rogovski 코일로 유도되어 오실로스코프 상의 파형으로 관찰되었다.

Fig. 5는 각 펄스전압에 따른 펄스파형을 나타낸 것이다.

Fig. 5(a)는 인가전압 4.5kV에서의 펄스파형을 나타낸 것으로 방전 시간 강화동으로 소열한다.

이때 전류(I)는

\[I = V_{\text{scope}} \times K_{\text{rogl}} \]

\(V_{\text{scope}} \) : 오실로스코프 전압.
\(K_{\text{rogl}} \) : Rogvski 코일의 intgrator 고유상수

로부터 구할 수 있다.

Fig. 5(b)는 인가전압 2~8kV일 때 오실로스코프 상의 펄스파형을 나타낸 것으로 각 파형은 인가전압에 따라 펄스전압이 증가하며, 최초파크의 이동은 거의 동일한 것으로 나타났다. Aizawa 등에 의하면 전자기필스영역에서 최초파크의 이동은 시간동안 전자기 유도에 의한 시립 간 충돌이 발생하게 되고 이 때 속력은 300m/s 이상인 것으로 측정되었다. 따라서 최초파크에 도달하는 수속수는 중요한 인자로 시간이 느릴 경우 용접이 되지 않고 변형만 발생할 수 있다.

3.2 접합간격에 따른 용접결과

3.2.1 용접 변형

전자기필스영역에서 순간적인 전류발생에 의해 발생된 전자기력은 Fig. 6에서와 같이 임의의 파이프를 변

Fig. 6 Variation of deformation zone with stand-off distance (Input voltage: 5kV) (a) A6063-A6061 (b) A6063-C1221
형시키며, 접합간격에 따라 변형부의 폭이 변하는 것으
로 나타났다. 동일한 인가전압이 가해졌을 때 나타나는
변형부의 폭은 접합간격이 큰 경우 더 크게 나타났다.
이와 같은 경향은 알루미늄-알루미늄 동종 및 알루미늄-
구리 이종융합에 있어 동일한 양상을 나타내었다.

파이프의 변형정도는 인가전압 및 접합간격에 따라
달라지는데 알루미늄-알루미늄 동종 및 알루미늄-구리
이종융합에의 영향에 대한 결과는 Fig. 7에 나타내었다.

전압을 동일하게 인가 시 접합간격이 증가함에 따라
변형부의 폭은 증가하는 것으로 나타났다. 알루미늄 동종
간의 용접에서는 5.5kV에서 접합간격의 증가에 따
른 변형부 폭의 증가가 두드러지게 나타났고, 6kV에서
는 왜연한 증가를 보였다. 이와 같은 결과는 접합간격
이 줄을 경우에는 넓은 경향이 있다. 외부에서 더 큰 에너
지가 가해져야 동일한 충격이 발생한다는 것을 의미한다.

한편, Fig. 7(b)에서와 같이 알루미늄-구리 이종융합
에서도 같은 인가전압에서 접합간격이 증가할수록 변형
부 폭은 증가하였고, 같은 접합간격에서는 인가전압을
증가시킬수록 변형부의 폭이 증가하였다.

3.2.2. 압축강도시험 결과

만능시험기를 이용하여 용접부의 압축강도를 시험한
결과 Fig. 8에서와 같이 압축응력에 의해 외부파이프가
변형되는 경우와 외부파이프는 변형되지 않고 내부파이
프만 넣는 경우의 2종류로 분류되었다.

외부파이프가 변형된 경우에 대하여 시험을 진행하여
단면을 확인한 결과 두 시험은 서로 제한 접합되어 있
는 것을 확인할 수 있었다.

따라서 본 양식시험을 통하여 용접부의 양호 및 불량
을 판단할 수 있으며, 용접부가 양호한 경우에는 외부
용력에 대하여 외부 알루미늄 파이프가 변형되면서 최
대값을 나타내었고, 용접이 불량한 경우에는 압축 도중
계면이 분리되면서 낮은값을 얻었다.

그림 9는 접합간격 및 인가전압에 대한 최대 압축강
도를 나타낸 것이다. Fig. 9(a)에서 접합간격이 좁은
1.5mm의 경우에는 충격을 줄 수 있는 이송거리가 짧아
양호한 결과가 될 수 있었고, 인가전압은 6kV로 중
가시킨 경계 압축강도가 증가하였다. 한편, 5.5kV 및
6kV에서 전압을 동일하게 인가 시 접합간격에 따라 압
축강도가 대체로 증가하나 약간 감소하는 경향을 나
타내었다. 이와 같은 경향은 Fig. 9(b)의 알루미늄과
구리의 이종융합에서도 유사하게 나타났다. 이는 앞서
변형부 폭의 변화와 차이를 나타내는데, Aizawa7에
의하면 전자기밀스용접에서 충돌속도는 접합간격이 증
가함에 따라 증가하다가 잃게 되어 다시 감소하는 경

![Fig. 7 Variation of length of deformation zone with stand-off distance (a) A6063-A6061 (b) A6063-C1221](attachment:fig7.png)

![Fig. 8 Results of compression test for welding specimens (a)Good (b)Fault](attachment:fig8.png)
3.3 융질계면 관찰결과

3.3.1 동종소재(A6063-A6061)

Fig. 10은 동종의 알루미늄 소재에 대하여 전자기리스 융질계면을 관찰한 결과이다.

융질부에서는 전자기리스융질 시 볼 수 있는 전형적인 웨이브 형상을 관찰할 수 있으며, 일부에서는 계면을 따라 미래합부가 일부 남아 있는 것을 볼 수 있다. 계면에서의 제 2상 형성을우를 파악하기 위해 EDS (Energy dispersive spectroscopy) 분석을 실시한 결과 특이한 상 형성을 없는 것으로 확인되었다.

3.3.2 이종소재(A6063-C1221)

Fig. 11은 이종소재인 알루미늄과 구리에 대한 전자기리스 융질계면을 관찰한 것이다.

융질계면에는 전자기리스융질에 의한 웨이브를 관찰할 수 있으며, 특이사항으로 계면사이에서 금속간합화합물이 형성되어 있는 것을 관찰할 수 있다. EDS 분석 결과 금속간합화합물은 Al: 45.3 wt%, Cu: 51.6 wt%, O: 3.1 wt%로 구성되어 있는 것으로 확인되었다. M.Marya(10)는 알루미늄과 구리의 전자기리스융질에서 금속간합화합물의 생성은 비록 시간이 매우 짧지만 충돌에 의한 온도상승과 알루미늄과 구리와의 발열반응에 의해 화학에 기인하는 것으로 보고하였고, 가장 형성되기 쉬운 금속간합화합물로 γ_1-CuAl6으로 주정하였다.

한편, 금속간합화합물에 대한 경우는 103.5\(\text{Hv}\)로 주위의 알루미늄(78.4\(\text{Hv}\)), 구리(106.8\(\text{Hv}\))와 비교시 구리에 가까운 값을 나타냈다. 이러한 금속간합화합물의 보다 정확한 형성과 원인에 대하여는 보다 깊은 연구가 필요할 것으로 사료된다.

4. 결 론

전자기리스융질에서 점착강도에 미치는
영향에 대하여 과학한 결과 다음과 같은 결론을 얻었다.

1) 전자기필스 방출시간은 인가전압이 변하더라도 변화가 없었다.
2) 전자기필스용접에서 접합간격이 증가하는 갑 인가 전압에서 변형내 폭을 증가시키는 역할을 하였다.
3) 접합간격이 증가함에 따라 압축강도가 증가하다가 감소하는 경향을 가지는 것은 접합간격이 너무 넓은 경우 시험편의 변형에 대한 저항력이 충돌속도를 감쇄시키는 역할을 하였기 때문이다.
4) 이중소재인 알루미늄과 구리에 대한 전자기필스용접 결과 용접계면에서는 γ₁-Cu₆Al₅으로 추정되는 금속간화합물이 관찰되었다.

참고 문헌

4. V.Shibman : Take advantage of the new magnetic pulse welding process, Svetarem, 2-3(2001), 14-16