On Direct Sums of Lifting Modules and Internal Exchange Property

WU DEJUN
Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China
e-mail: wudj@lut.cn

Abstract. Let R be a ring with identity and let $M = M_1 \oplus M_2$ be an amply supplemented R-module. Then it is proved that M_i has (D_1) and is M_j-cojective for $i \neq j$, $i = 1, 2$, if and only if for any coclosed submodule X of M, there exist $M_i' \leq M_1$ and $M_2' \leq M_2$ such that $M = X \oplus M_1' \oplus M_2'$.

1. Introduction

Throughout this paper all rings will have an identity and all modules will be unital left R-modules. $N \leq M(N|M)$ will mean N is a submodule (a direct summand) of the module M. For $M = \bigoplus_{i \in I} M_i$ and $K \subseteq I$, $M(K) = \bigoplus_{i \in K} M_i$.

A module is extending (or satisfies (C_1)) if every submodule is essential in a direct summand. Dually, a module M is called a lifting module (or satisfies (D_1)), if for any submodule N of M, there exist a direct summand K of M such that $K \leq N$ and $N/K \ll M/K$, equivalently, for any submodule N of M there exist submodules K_1, K_2 of M such that $M = K_1 \oplus K_2$, $K_1 \leq N$ and $N \cap K_2 \ll K_2$. Lifting modules generalize discrete and quasi-discrete ones; they have been studied extensively (see, for examples, [1], [2], [6], [8], [9]) but many questions remain unresolved.

An open problem is to find sensible necessary and sufficient conditions for the direct sum of lifting modules to be lifting. If M_1 and M_2 are relatively projective, quasi-projective and (D_1)-modules then $M = M_1 \oplus M_2$ is a (D_1)-module ([9, Theorem 9]). Let $M = \bigoplus_{i=1}^n M_i$ be a finite direct sum of relatively projective modules M_i. Then M is lifting if and only if M is an amply supplemented and M_i is lifting for all $1 \leq i \leq n$([1, Corollary 2.9]). However, it is not a sufficient condition for a finite direct sum of lifting modules to be a lifting module. Let p be a prime integer and M denote the \mathbb{Z}-module, $(\mathbb{Z}/p\mathbb{Z}) \oplus (\mathbb{Z}/p^2\mathbb{Z})$. Then M is a lifting module and $\mathbb{Z}/p\mathbb{Z}$ is not $\mathbb{Z}/p^2\mathbb{Z}$-projective (see [9, Example 4]).

In this paper we consider when the direct sum of two lifting modules is lifting. In [3] the authors claim that for any closed submodule X of $M = M_1 \oplus M_2$, M decomposes as $M = X \oplus M_1' \oplus M_2'$ with $M_i' \leq M_i$, if and only if M_i has (C_1) and

Received November 19, 2003, and, in revised form, October 2, 2004.
2000 Mathematics Subject Classification: 16D10, 16D99.
Key words and phrases: lifting module, M-cojective module, M-cojective module.
is \(M_j \)-jective for \(i \neq j \). Dually, we prove that if \(M = M_1 \oplus M_2 \) be an amply supplemented \(R \)-module. Then it is proved that \(M_i \) has \((D_1)\) and is \(M_j \)-jective for \(i \neq j \) if and only if for any coclosed submodule \(X \) of \(M \), there exist \(M'_1 \leq M_1 \) and \(M'_2 \leq M_2 \) such that \(M = X \oplus M'_1 \oplus M'_2 \).

2. Preliminaries

Let \(M \) be a module and \(S \leq M \). \(S \) is called small in \(M \) (denoted by \(S \ll M \)) if for any \(T \leq M \), \(S + T = M \) implies \(T = M \). For \(N, L \leq M, N \) is a supplement of \(L \) in \(M \) if \(N + L = M \) with \(N \cap L \ll N \). Following [7], a module \(M \) is called supplemented if every submodule of \(M \) has a supplement in \(M \). On the other hand, the module \(M \) is amply supplemented if, for any submodules \(A, B \) of \(M \) with \(M = A + B \) there exists a supplement \(P \) of \(A \) in \(M \) such that \(P \leq B \). Following [10], the module \(M \) is called a weakly supplemented module if for each submodule \(A \) of \(M \) there exists a submodule \(B \) of \(M \) such that \(M = A + B \) and \(A \cap B \ll M \).

Let \(M \) be a module and \(B \leq A \leq M \). If \(A/B \ll M/B \), then \(B \) is called a coessential submodule of \(A \) in \(M \). A submodule \(A \) of \(M \) is called coclosed if \(A \) has no proper coessential submodule. Also, we will call \(B \) an coclosure(or an s-closure) of \(B \) in \(M \), if \(B \) is a coessential submodule of \(A \) and \(B \) is coclosed in \(M \).

Let \(M \) be a module. Then by [8, Proposition 4.8], \(M \) is lifting if and only if \(M \) is amply supplemented and every supplement submodule of \(M \) is a direct summand.

We list a few lemmas for later use.

Lemma 2.1. Let \(M \) be a module and \(N \leq M \). Consider the following conditions:

1. \(N \) is a supplement submodule of \(M \);
2. \(N \) is coclosed in \(M \);
3. For all \(X \leq N \), \(X \ll M \) implies \(X \ll N \).

Then \((1) \Rightarrow (2) \Rightarrow (3) \) hold. If \(M \) is a weakly supplemented module then \((3) \Rightarrow (1) \) holds.

Proof. [1, Lemma 1.1]. \(\square \)

Lemma 2.2. Let \(M = M_1 \oplus M_2 \) and \(N, L \leq M_1 \). If \(N \) is a supplement of \(L \) in \(M_1 \), then \(N \oplus M_2 \) is a supplement of \(L \) in \(M \).

Proof. Let \(N \) be a supplement of \(L \) in \(M_1 \). Then \(M_1 = N + L \) and \(N \cap L \ll N \). It is easy to see that \(M = (N \oplus M_2) + L \) and \((N \oplus M_2) \cap L = N \cap L \ll N \). Thus \(N \oplus M_2 \) is a supplement of \(L \) in \(M \). \(\square \)

Lemma 2.3. Let \(K \leq L \leq M \). If \(K \) is coclosed in \(M \), then \(K \) is coclosed in \(L \) and the converse is true if \(L \) is coclosed in \(M \).

Proof. [11, Lemma 2.6]. \(\square \)

Definition 2.4 ([3]). Let \(M = \oplus_{i \in I} M_i \) be a direct sum of submodules \(M_i \). Then...
we say that the decomposition $M = \oplus_{i \in I} M_i$ is exchangeable if for any direct summand N of M we have $M = (\oplus_{i \in I} M'_i) \oplus N$ with $M'_i \leq M_i$.

3. *Cojective modules

Let A and B be modules. Following [5], B is called A-ojective if any diagram

$$
\begin{array}{c}
X > \\
\phi
\end{array}
\begin{array}{c}
\rightarrow
\downarrow
\rightarrow
\downarrow
\end{array}
\begin{array}{c}
A
\end{array}
$$

can be embedded in a diagram

$$
\begin{array}{c}
X > \\
\phi
\end{array}
\begin{array}{c}
\rightarrow
\downarrow
\rightarrow
\downarrow
\end{array}
\begin{array}{c}
A = A_1 \oplus A_2
\end{array}
\begin{array}{c}
\phi_1
\phi_2
\end{array}
\begin{array}{c}
B_1 \oplus B_2
\end{array}
$$

such that ϕ_2 is a monomorphism and for $x = a_1 + a_2$ and $\phi(x) = b_1 + b_2$ one has $b_1 = \phi_1(a_1)$ and $a_2 = \phi_2(b_2)$.

Mohamed and Müller named it ojectivity in honor of Oshiro and they characterize it in [3] as follows:

Theorem 3.1. Let $M = A \oplus B$. Then the following are equivalent:

1. B is A-ojective;
2. For any complement C of B, M decomposes as $M = C \oplus A' \oplus B'$ with $A' \leq A$ and $B' \leq B$.

According to this characterization, Mohamed and Müller give the following dual definition in [4, Definition 2.3].

Definition 3.2. Let A, B be left R-modules. We say B is A-*cojective* if for any supplement C of A in $A \oplus B$, $A \oplus B$ decomposes as $A \oplus B = C \oplus A' \oplus B'$ with $A' \leq A$ and $B' \leq B$. If B is A-*cojective* and A is B-*cojective*, we say that A and B are mutually *cojective*.

As supplements need not exist, *cojectivity is not the precise dual of ojectivity. The precise dual of ojectivity as follows (See, [4]):

Let A and B be modules. A is B-cojective if any diagram

$$
\begin{array}{c}
A
\end{array}
\begin{array}{c}
\phi
\end{array}
\begin{array}{c}
\downarrow
\end{array}
\begin{array}{c}
X \prec \pi
\end{array}
\begin{array}{c}
B
\end{array}
$$
can be embedded in a diagram
\[
\begin{array}{c}
A & = & A_1 & \oplus & A_2 \\
\varphi & \downarrow & \varphi_1 & \downarrow & \varphi_2 \\
X & \prec & B = B_1 & \oplus & B_2
\end{array}
\]

such that \(\varphi_2 \) is onto, \(\pi \varphi_1 = \varphi|A_1 \) and \(\varphi \varphi_2 = \pi|B_2 \).

In [4, Theorem 2.8], Mohamed and Müller give the following characterization of cojectivity:

Let \(M = A \oplus B \). Then \(A \) is \(B \)-cojective if and only if whenever \(M = N + B \), we have \(M = N' \oplus A' \oplus B' = N' + B \) with \(N' \leq N, A' \leq A \) and \(B' \leq B \). Therefore if \(A \) is \(B \)-cojective, then \(A \) is \(B \)-cojective (See, [4, Proposition 2.9]).

Proposition 3.3. Let \(M = M_1 \oplus M_2 \). If \(M_1 \) is \(M_2 \)-projective, then \(M_1 \) is \(M_2 \)-cojective.

Proof. Let \(N \) be a supplement of \(M_2 \) in \(M \). Then \(M = N + M_2 \) and \(N \cap M_2 \ll N \).
Since \(M_1 \) is \(M_2 \)-projective, by [1, Lemma 2.5], there exists a submodule \(N' \) of \(N \) such that \(M = N' \oplus M_2 \). Clearly \(N = N' \oplus (N \cap M_2) \). Hence \(N = N' \) and \(M = N + M_2 \). Thus \(M_1 \) is \(M_2 \)-cojective. \(\square \)

Let \(M \) be a module. Consider the following condition:

\((D_3) \) For every direct summands \(K, L \) of \(M \) with \(M = K + L, K \cap L \) is a direct summand of \(M \).

Following [8], if the module \(M \) is lifting and has \((D_3) \) then it is called a quasi-discrete module.

Let \(M_1 \) and \(M_2 \) be modules. Following [1], the module \(M_1 \) is small \(M_2 \)-projective if every homomorphism \(f : M_1 \to M_2/A \), where \(A \) is a submodule of \(M_2 \) and \(Im f \ll M_2/A \), can be lifted to a homomorphism \(f : M_1 \to M_2 \).

Proposition 3.4. Let \(M = M_1 \oplus M_2 \) be an amply supplemented module with \((D_3) \).
If \(M_1 \) is \(M_2 \)-cojective, then \(M_1 \) is small \(M_2 \)-projective.

Proof. Let \(N \) be a submodule of \(M \) such that \((N + M_1)/N \ll M/N \). Then \(M = N + M_2 \). Since \(M \) is amply supplemented there exists a submodule \(N' \) of \(M \) such that \(N' \leq N, M = N' + M_2 \) and \(N' \cap M_2 \ll N' \), that is, \(N' \) is a supplement of \(M_2 \) in \(M \). Since \(M_1 \) is \(M_2 \)-cojective, \(M = N' \oplus M_1 \oplus M_2' \) with \(M_2' \leq M_2 \). By \((D_3) \), \(N' \cap M_2 \) is a direct summand of \(M \), and so \(M = N' \oplus M_2 \). By [1, Lemma 2.4], \(M_1 \) is small \(M_2 \)-projective. \(\square \)

Proposition 3.5. Let \(A_1 |A \) and \(B_1 |B \). If \(B \) is \(A \)-cojective, then \(B_1 \) is \(A_1 \)-cojective.

Proof. Write \(M = A \oplus B, A = A_1 \oplus A_2 \) and \(B = B_1 \oplus B_2 \).

(1) First we prove that \(B_1 \) is \(A \)-cojective. Write \(N = A \oplus B_1 \), and let \(X \) be a supplement of \(A \) in \(N \). By Lemma 2.2, \(X \oplus B_2 \) is a supplement of \(A \) in \(M \).

As \(B \) is \(A \)-cojective, \(M = X \oplus B_2 \oplus A' \oplus B' \) with \(A' \leq A \) and \(B' \leq B \). Hence
$N = X \oplus A' \oplus (N \cap (B_2 \oplus B'))$. The result now follows if we show $N \cap (B_2 \oplus B') \leq B_1$. Indeed, $N \cap (B_2 \oplus B') = (A \oplus B_1) \cap (B_2 \oplus B') \leq (A \oplus B_1) \cap B = B_1$.

(2) Next we prove that B is A_1-cojective. Write $L = A_1 \oplus B$, and let Y be a supplement of A_1 in L. By Lemma 2.1, it is easy to see that A_1 is a supplement of Y in M. Then A is a supplement of Y in M by Lemma 2.2. Again by Lemma 2.1, Y is a supplement of A in M. As B is A-cojective, $M = Y \oplus A'' \oplus B''$ with $A'' \leq A$ and $B'' \leq B$. Hence $L = Y \oplus B' \oplus (L \cap A')$. It remains to show that $L \cap A' \leq A_1$. Let $a'' \in L \cap A'$. Then $a'' = a_1 + b$ with $a_1 \in A_1$ and $b \in B$. Hence $b = a'' - a_1 \in A \cap B = 0$, and so $a'' = a_1 \in A_1$.

(3) Our proposition follows from (1) and (2). \hfill \square

Lemma 3.6. Let $M = A \oplus B$ where A is B-cojective and B has (D_1). If X is a coclosed submodule of M with $M = X + B$, then M decomposes as $M = X \oplus A' \oplus B'$ with $A' \leq A$ and $B' \leq B$.

Proof. Let $M = X + B$. Since B has (D_1), there exists a direct summand B_1 of B such that $B = B_1 \oplus B_2$ and $B_1 \leq X \cap B, X \cap B_2 \leq B_2$. Now $M = A \oplus B_1 \oplus B_2$. Write $N = A \oplus B_2$. Then $X = B_1 \cap X_1$, where $X_1 = X \cap N$. Hence $M = X + B = X_1 + B_1 + B_2$, and so $N = X_1 + B_2$. Clearly $X_1 \cap B_2 = X \cap B_2 \leq B_2$. Then B_2 is a supplement of X_1 in N. Now X_1 is a coclosed submodule of X, and X is a coclosed submodule of M. It then follows by Lemma 2.3 that X_1 is coclosed in N. It is easy to see that X_1 is a supplement of B_2 in N. Now A is B_2-cojective, by Proposition 3.5. Now we get $N = X_1 \oplus A' \oplus B'$ with $A' \leq A$ and $B' \leq B_2$. Hence $M = N \oplus B_1 = X_1 \oplus B_1 \oplus A' \oplus B_2 = X \oplus A' \oplus B_2'$. \hfill \square

We prove here the dual of the result of [3, Theorem 10].

Theorem 3.7. Let $M = M_1 \oplus M_2$ be an amply supplemented module. Then M_i has (D_1) and is M_j-cojective for $i \neq j$ if and only if for any coclosed submodule X of M, we have $M = X \oplus M_i' \oplus M_2$ with $M_i' \leq M_i$.

Proof. The sufficiency follows from Definition 3.2 and from the fact that (D_1) is inherited by summands.

Conversely, suppose that M_i has (D_1) and is M_j-cojective for $i \neq j$. Let X be a coclosed submodule of M. It is easy to see that M/X is amply supplemented, and so $(X + M_j)/X$ has a coclosure in M/X by [1, Proposition 1.5], that is, there exists a coclosed submodule N/X of M/X such that $N/X \leq (X + M_j)/X$ and $(X + M_1)/N \leq M_i/N$. By [1, Lemma 1.4], N is coclosed in M. As $M = N + M_2$, we get by Lemma 3.6 that $M = N \oplus M_1' \oplus M_2$ with $M_i' \leq M_i$. Write $N_1 = M_1' \oplus M_2$. Note that $X = N \cap (X + N_1)$ and $M = N + (X + N_1)$, and so $M/X = N/X \oplus (X + N_1)/X$. Therefore $(X + N_1)/X$ is coclosed in M/X. Again by [1, Lemma 1.4], $X + N_1$ is coclosed in M. Moreover, $M = (X + N_1) + M_1$. Again by Lemma 3.6, $M = (X + N_1) \oplus M_1'' \oplus M_2''$ with $M_i'' \leq M_i$. Write $N_2 = M_1'' \oplus M_2''$. Hence $N_1 = (X + N_1) \cap (N_1 + N_2)$ and $N \cap (X + N_1) \cap (N_1 + N_2) = X \cap (N_1 + N_2) = 0$. So $M = X \oplus (N_1 + N_2) = X \oplus (M_1' + M_2' + M_1'' + M_2'') = X \oplus M_1' \oplus M_2$ where $M_1' = M_1' + M_1'$ and $M_2'' = M_2' + M_2'$. \hfill \square
In view of Definition 2.4, Theorem 3.7 may be reformulated as follows:

Theorem 3.8. Let $M = M_1 \oplus M_2$ be an amply supplemented module. Then M has (D_1) and the decomposition is exchangeable if and only if, for $i = 1, 2$, M_i has (D_1) and is M_j-cojective for $i \neq j$.

By analogy with the proof of [3, Theorem 11], we have

Theorem 3.9. Let $n \geq 2$ be an integer and let $M = \bigoplus_{i=1}^{n} M_i$ be an amply supplemented module. Then the following are equivalent:

1. M has (D_1) and the decomposition is exchangeable;
2. The M_i have (D_1), and $M_1 \oplus \cdots \oplus M_{i-1}$ and M_i are mutually *cojective, for $2 \leq i \leq n$;
3. The M_i have (D_1), and $M(I)$ is $M(J)$-cojective for any disjoint nonempty subset I and J of $\{1, 2, \cdots n\}$.

4. Semi-discrete modules

Definition 4.1 ([3]). Let μ be a cardinal number. A module M is said to have the μ-internal exchange property if any decomposition $M = \bigoplus_{i \in I} M_i$ with $|I| \leq \mu$, is exchangeable.

Definition 4.2. We call a module M semi-discrete if M has (D_1) and the 2-internal exchange property.

Thus, if M is an amply supplemented module, then M is semi-discrete if and only if for any coclosed submodule C of M and any decomposition $M = A \oplus B$, we have $M = C \oplus A' \oplus B'$ with $A' \leq A$ and $B' \leq B$.

It is well known that a discrete module has the exchange (hence the internal exchange) property, and so is semi-discrete module. However, it is not known whether a quasi-discrete module has the internal exchange property. Let M be a quasi-discrete module. In [8, Corollary 4.19], it is proved that if every hollow summand of M has a local endomorphism ring, then M has exchange property, and so these modules are semi-discrete.

In [8, Lemma 4.23], it is noticed that if M is a quasi-discrete module, then for every decomposition $M = A \oplus B$, A and B are mutually projective. The following is analogue for semi-discrete modules.

Proposition 4.3. Let M be any module. M is semi-discrete if and only if M has (D_1) and for every decomposition $M = A \oplus B$, A and B are mutually *cojective.

Proof. The result follows from Theorem 3.7 and from the fact that (D_1) is inherited by summands.

A module $M = M_1 \oplus \cdots \oplus M_n$ is quasi-discrete if and only if M_i is quasi-discrete and M_j-projective for all $i \neq j$([1, Theorem 2.13]). For $n = 2$ the following is an
analogous result for semi-discrete modules.

Theorem 4.4. Let \(M = M_1 \oplus M_2 \) be an amply supplemented module. Then \(M \) is semi-discrete if and only if \(M_i \) is semi-discrete and \(M_j \)-cojective for \(i \neq j \).

Proof. The necessity follows from [3, Proposition 15] and Proposition 4.3. The sufficiency is analogous with the proof of [3, Theorem 19]. \(\square \)

Corollary 4.5. Let \(n \geq 2 \) be an integer and let \(M = \oplus_{i=1}^{n} M_i \) be an amply supplemented module. Then the following are equivalent:

1. \(M \) is semi-discrete;
2. The \(M_i \) are semi-discrete, and \(M_1 \oplus \cdots \oplus M_{i-1} \) and \(M_i \) are mutually \(\ast \)-cojective, for \(2 \leq i \leq n \);
3. Every \(M_i \) is semi-discrete, and \(M(I) \) is \(M(J) \)-\(\ast \)-cojective for any disjoint nonempty subset \(I \) and \(J \) of \(\{1, 2, \cdots n\} \).

Proof. Theorem 4.4 and induction. \(\square \)

Proposition 4.6. Let \(M \) be a quasi-projective module. Then the following are equivalent:

1. \(M \) is supplemented;
2. \(M \) is amply supplemented;
3. \(M \) is lifting;
4. \(M \) is quasi-discrete;
5. \(M \) is discrete;
6. \(M \) is semi-discrete.

Proof. (5) \(\Rightarrow \) (6) \(\Rightarrow \) (3) are clear. Now the result follows by [12, Proposition 2.2]. \(\square \)

Theorem 4.7. For any ring \(R \) the following are equivalent:

1. \(R \) is a left perfect ring;
2. Every quasi-projective left \(R \)-module is semi-discrete.

Proof. This is clear by Proposition 4.6 and [12, Theorem 2.6]. \(\square \)

Theorem 4.8. For any ring \(R \) the following are equivalent:

1. \(R \) is a left perfect ring;
2. Every projective left \(R \)-module is semi-discrete.
Proof. This is clear by Proposition 4.6 and [12, Theorem 2.7]. □

Corollary 4.9. Let M be a quasi-projective module such that $M = \oplus_{i=1}^{n} M_i$ is a finite direct sum of submodules M_i, $(1 \leq i \leq n)$. Then M is semi-discrete if and only if M_i $(1 \leq i \leq n)$ is semi-discrete.

Proof. Necessity is clear. Conversely, suppose that each M_i is semi-discrete. Then, by [12, Proposition 2.8], M is lifting. Hence M is semi-discrete by Proposition 4.6. □

Acknowledgements. I would like to express my gratefulness to Professor Liu Zhongkui and the referee for their invaluable suggestions and comments, which certainly improved the presentation of the paper.

References

