Commutative Semigroups whose Proper Homomorphic Images are All of Smaller Cardinality

RALPH P. TUCCI
Department of Mathematics and Computer Science, Loyola University New Orleans, New Orleans, LA 70118, U.S.A.
e-mail: tucci@loyno.edu

Abstract. We characterize those commutative semigroups S such that every non-isomorphic homomorphic image of S has smaller cardinality than S. We also characterize commutative groups with the same property.

In [3] Kaplansky posed the following problem for an infinite commutative group G: Show that every proper (not isomorphic) homomorphic image of G is finite if and only if G is an infinite cyclic group. In [2] Jensen and Miller characterized all infinite commutative semigroups S such that every proper homomorphic image of S is finite; they called such semigroups homomorphically finite or HF semigroups. In this note we characterize those infinite commutative semigroups S such that every proper homomorphic image of S is of smaller cardinality than S. We call such semigroups H-smaller. Surprisingly, the H-smaller semigroups are precisely those in Jensen and Miller’s Theorem. As part of the proof of this fact we also generalize the exercise in Kaplansky by showing that, if G is an infinite commutative group, then every proper homomorphic image of G is of smaller cardinality than G if and only if G is an infinite cyclic group.

For any semigroup S let S^0, S^1, and $S^{0,1}$ denote S with zero adjoined, S with identity adjoined, and S with both zero and identity adjoined, respectively. The group of integers is denoted \mathbb{Z}. The symbol \mathbb{N}' stands for any subsemigroup of $(\mathbb{N},+)$, the semigroup of positive integers under addition. We now state Jensen and Miller’s theorem.

Theorem 1 [2, Theorem 3]. Let S be an infinite commutative semigroup. Then every proper homomorphic image of S is finite if and only if S is either \mathbb{Z}, \mathbb{Z}^0, \mathbb{N}', $(\mathbb{N}')^0$, $(\mathbb{N}')^1$, or $(\mathbb{N}')^{0,1}$.

We let $|X|$ denote the cardinality of X for any set X. Throughout the rest of this note S will denote an infinite commutative H-smaller semigroup. Our result follows easily from the following lemmas, which are taken almost without change from [2].

Received November 5, 2004.
2000 Mathematics Subject Classification: 20M14, 20M15.
Key words and phrases: semigroup, commutative, homomorphic image, cardinality.
Lemma 2. If I is a nonzero ideal of S, then $|I| = |S|$.

Proof. If $I \neq 0$, then $|S/I| < |S|$. But $S = (S \setminus I) \cup I$ so that $|S| = |S \setminus I| + |I| = |S/I| + |I|$, which implies that $|S| = |I|$.

Lemma 3.

(a) If S has no zero, then S embeds in a group.

(b) If S has a zero, then $S \setminus \{0\}$ embeds in a group.

Proof. It suffices to show that S or $S \setminus \{0\}$ is cancellative. First we show that if $0 \in S$ then S has no nonzero nilpotent elements. Let $s \in S$ be nilpotent of index n. Then the ideal $s^{n-1}S^1 = \{s^{n-1}t \mid t \in S^1\} sS^1$ satisfies $|s^{n-1}S^1| \leq |S^1/sS^1| < |S|$. By Lemma 2 it follows that $s = 0$.

Now we show that if $0 \in S$ then $S \setminus 0$ is closed under multiplication. Let $s, t \in S$ with $st = 0$, and assume that $s \neq 0$. Then $(sS \cap tS)^2 = 0$ so that $sS \cap tS = 0$. Hence tS embeds in S/sS so $|tS| < |S|$, and Lemma 2 implies that $tS = 0$. In particular, $t^2 = 0$, so by the previous paragraph $t = 0$.

Finally we show that S or $S \setminus 0$ is cancellative. Let $0 \neq s \in S$ and define the congruence ρ_s by the following: if $a, b \in S$ then $a\rho sb$ if and only if $as = bs$. By the previous paragraphs $sS \neq 0$. Then $|S| = |sS| = |S/\rho_s|$ so that ρ_s is the identity congruence, and hence $a = b$.

Lemma 4. The group of quotients of S or $S \setminus \{0\}$ is countable.

Proof. Let G be the group of quotients of S or $S \setminus \{0\}$. We first show that G is H-smaller. Clearly, $|G| = |S|$. Let ρ be a congruence on G which is not 1-1. Suppose that $\frac{a}{b} \rho \frac{c}{d}$ for distinct $\frac{a}{b}, \frac{c}{d} \in G$. Then $((\frac{a}{b})bd)\rho((\frac{c}{d})bd)$; i.e., ad be and ad $\neq bc$. Thus, ρ is not 1-1 on S so that $|S/\rho| < |S|$, and hence $|G/\rho| < |G|$.

It is now easy to see that G is countable. Let $g \in G$ be any non-identity element and let $K = \langle g \rangle$ be the group generated by g. Then $|G| = |K||G/K|$ and $|G/K| < |G|$, so $|G| = |K|$ where K is countable.

Corollary 5. Let G be an infinite commutative group. Then G is H-smaller if and only if $G \cong \mathbb{Z}$.

Proof. This follows from the proof of the previous lemma.

Theorem 6. Let S be an infinite commutative semigroup. Then the following are equivalent:

(1) S is H-smaller;

(2) S is HF;

(3) S is one of the following: \mathbb{Z}, \mathbb{Z}^0, \mathbb{N}^0, $(\mathbb{N}'^0, (\mathbb{N}')^1$, or $(\mathbb{N}')^{0,1}$.

Proof. (1) \Rightarrow (2). By Lemma 4, S is countable and H-smaller, and hence HF.

(2) \Rightarrow (1). This follows by definition.

(2) \Leftrightarrow (3). This is Theorem 1, Jensen and Miller’s Theorem.
Acknowledgement. The author would like to thank the referee for his comments, which substantially improved this paper.

References

