Factor Rank and Its Preservers of Integer Matrices

Seok-Zun Song and Kyung-Tae Kang
Department of Mathematics, Cheju National University, Jeju 690-756, Korea
e-mail: szsong@cheju.ac.kr and kangkt@cheju.ac.kr

Abstract. We characterize the linear operators which preserve the factor rank of integer matrices. That is, if M is the set of all $m \times n$ matrices with entries in the integers and $\min(m, n) > 1$, then a linear operator T on M preserves the factor rank of all matrices in M if and only if T has the form either $T(X) = UXV$ for all $X \in M$, or $m = n$ and $T(X) = UX^tV$ for all $X \in M$, where U and V are suitable nonsingular integer matrices. Other characterizations of factor rank-preservers of integer matrices are also given.

1. Introduction

The research of Linear Preserver Problems is an active area of matrix theory (see [1]-[7]). Many researchers have studied on the ranks and their preservers of matrices over fields ([1]-[5]). Also (nonnegative) integer matrices are combinatorially interesting matrices and hence it has been a subject of many research works ([6], [7]).

If F is an algebraically closed field, which linear operators T on the space of $m \times n$ matrices over F preserve the rank of each matrix? Evidently if U and V are $m \times m$ and $n \times n$ nonsingular matrices, respectively, then $X \rightarrow UXV$ is a rank-preserving linear operator. When $m = n$, $X \rightarrow UX^tV$ is also. Already in 1957 Marcus and Moyls [4] found that such (U, V)-operators were the only rank preservers. Later they [5] obtained that T preserves all ranks if and only if T preserves rank 1. In 1981, Lautemann [3] extended these results to an arbitrary field, and found that T preserves all ranks if and only if T is bijective and preserves rank 1 if and only if T is a (U, V)-operator.

In this paper, we characterize linear operators which preserve the factor ranks of all matrices over the ring of integers. That is, if M is the set of all $m \times n$ matrices with entries in the integers and $\min(m, n) > 1$, then a linear operator T on M preserves the factor rank of all matrices in M if and only if T has the form either $T(X) = UXV$ for all $X \in M$, or $m = n$ and $T(X) = UX^tV$ for all $X \in M$, where U and V are suitable nonsingular integer matrices. Other characterizations of factor rank-preservers of integer matrices are also given.

Received September 2, 2005.
2000 Mathematics Subject Classification: 15A03, 15A04, 15A36.
Key words and phrases: factor rank preserver, (U, V)-operator.
2. Preliminaries and basic results

Let \(\mathcal{M}_{m \times n}(\mathbb{Z}) \) denote the set of all \(m \times n \) matrices with entries in the ring, \(\mathbb{Z} \) of integers. Addition, multiplication by scalars, and the product of matrices are defined as if \(\mathbb{Z} \) were a field. Let \(\mathcal{E}_{m,n} = \{ E_{ij} \mid i = 1, \ldots, m \text{ and } j = 1, \ldots, n \} \), where \(E_{ij} \) is the \(m \times n \) matrix whose \((i,j)\)th entry is 1 and whose other entries are 0. We call each member of \(\mathcal{E}_{m,n} \) a cell.

Lowercase, boldface letters will represent vectors, a vector \(\mathbf{u} \) is column vector (\(\mathbf{u}^t \) is a row vector). A nonzero vector \(\mathbf{p} = [p_i] \) in \(\mathbb{Z}^n \) is irreducible if the greatest common divisor of nonzero \(p_i \)’s is 1 (that is, \(\gcd(p_1, \ldots, p_n) = 1 \)). A subset \(S = \{ \mathbf{s}_1, \mathbf{s}_2, \ldots, \mathbf{s}_d \} \) of \(\mathbb{Z}^n \) is called linearly independent if there exist \(\alpha_1, \alpha_2, \ldots, \alpha_d \) in \(\mathbb{Z} \), not all zeros, such that \(\sum_{i=1}^{d} \alpha_i \mathbf{s}_i = \mathbf{0} \); \(S \) is called linearly independent if it is not linearly dependent.

An \(n \times n \) integer matrix \(A \) is called nonsingular if for any vector \(\mathbf{x} \) in \(\mathbb{Z}^n \), \(A\mathbf{x} = \mathbf{0} \) implies that \(\mathbf{x} = \mathbf{0} \). We note that nonsingularity and invertibility of a square integer matrix are not equivalent. For example, consider a matrix \(A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \) in \(\mathcal{M}_{2 \times 2}(\mathbb{Z}) \).

Then we can easily show that \(A \) is nonsingular but not invertible in \(\mathcal{M}_{2 \times 2}(\mathbb{Z}) \).

Lemma 2.1. Let \(\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n \) be linearly independent vectors in \(\mathbb{Z}^n \). Then for any nonzero vector \(\mathbf{b} \) in \(\mathbb{Z}^n \), there exist nonzero integer \(\beta \) and integers \(\alpha_i \), not all zero, such that \(\beta \mathbf{b} = \alpha_1 \mathbf{p}_1 + \alpha_2 \mathbf{p}_2 + \cdots + \alpha_n \mathbf{p}_n \).

Proof. Let \(A \) be the \(n \times n \) matrix whose columns are \(\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n \). Then \(A \) is nonsingular, and hence \(\det(A) \) is a nonzero integer. Consider a system \(A\mathbf{x} = \mathbf{b} \) of \(n \) linear equations in \(n \) unknowns. By Cramer’s rule, this system has a unique solution \(x_i = \frac{\det(A_i)}{\det(A)} \) in the rational numbers for all \(i = 1, 2, \ldots, n \), where \(A_i \) is the matrix obtained by replacing the entries in the \(i \)th column of \(A \) by the entries in \(\mathbf{b} \). Then we have

\[
\mathbf{b} = \frac{\det(A_1)}{\det(A)} \mathbf{p}_1 + \frac{\det(A_2)}{\det(A)} \mathbf{p}_2 + \cdots + \frac{\det(A_n)}{\det(A)} \mathbf{p}_n.
\]

If we take \(\beta = \det(A) \) and \(\alpha_i = \det(A_i) \), then the result follows. \(\square \)

If \(\mathbf{a} \) and \(\mathbf{b} \) are nonzero vectors in \(\mathbb{Z}^n \), we denote \(\mathbf{a} \simeq \mathbf{b} \) if \(\mathbf{a} \) and \(\mathbf{b} \) have an irreducible common factor. That is, \(\mathbf{a} \simeq \mathbf{b} \) if and only if there exists an irreducible vector \(\mathbf{p} \) in \(\mathbb{Z}^n \) such that \(\mathbf{a} = \alpha \mathbf{p} \) and \(\mathbf{b} = \beta \mathbf{p} \) for some nonzero integers \(\alpha \) and \(\beta \). Then we can easily show that \(\simeq \) is an equivalence relation in \(\mathbb{Z}^n \).

Proposition 2.2. If \(\mathbf{a} \) and \(\mathbf{b} \) are nonzero vectors in \(\mathbb{Z}^n \) with \(\alpha \mathbf{a} = \beta \mathbf{b} \) for some nonzero integers \(\alpha \) and \(\beta \), then we have \(\mathbf{a} \simeq \mathbf{b} \).

Proof. Let \(\mathbf{a} = [a_1, \ldots, a_n] \), \(\mathbf{b} = [b_1, \ldots, b_n] \) and \(\alpha' = \gcd(a_1, \ldots, a_n) \). Then there exists an irreducible vector \(\mathbf{p} \) in \(\mathbb{Z}^n \) such that \(\mathbf{a} = \alpha' \mathbf{p} \). Thus \(\alpha \mathbf{a} = \beta \mathbf{b} \) becomes

\[
\alpha \alpha' \mathbf{p} = \beta \mathbf{b}
\]
Let $\gamma = \gcd(\alpha \alpha', \beta)$, $\gamma_1 = \frac{\alpha \alpha'}{\gamma}$ and $\gamma_2 = \frac{\beta}{\gamma}$. Then γ_1 and γ_2 are nonzero in \mathbb{Z}, and (2.1) becomes

$$
(2.2) \quad \gamma_1 p = \gamma_2 b.
$$

Therefore we have that γ_1 divides every $\gamma_2 b_i$ for all $i = 1, \cdots, n$. Since $\gcd(\gamma_1, \gamma_2) = 1$ and p is an irreducible vector, $\gamma_2 = \pm 1$ so that $b = \pm \gamma_1 p$. Therefore a and b have an irreducible common factor p, and thus $a \simeq b$. \hfill \Box

The factor rank, $fr(A)$, of a nonzero matrix $A \in \mathcal{M}_{m \times n}(\mathbb{Z})$ is defined as the least integer k for which there exist $m \times k$ and $k \times n$ matrices B and C, respectively, with $A = BC$. If the matrices were considered as matrices in the real field, then the factor ranks of them are the same as their ranks. The factor rank of a zero matrix is zero.

It is obvious that for a matrix A in $\mathcal{M}_{m \times n}(\mathbb{Z})$, $fr(A) = 1$ if and only if there exist two nonzero vectors $a \in \mathbb{Z}^m$ and $x \in \mathbb{Z}^n$ such that $A = ax^t$. We call a the left factor, and x the right factor of A.

For any index $i \in \{1, \cdots, n\}$, we denote $e^{(n)}_i$ as the irreducible vector in \mathbb{Z}^n with “1” in i^{th} position and zero elsewhere.

Lemma 2.3. Let A and B be factor rank-1 matrices in $\mathcal{M}_{m \times n}(\mathbb{Z})$ with factorizations $A = ax^t$ and $B = by^t$, where $A + B \neq 0$. Then $fr(A + B) = 1$ if and only if $a \simeq b$ or $x \simeq y$.

Proof. Suppose that $fr(A + B) = 1$. Let

$$
A = ax^t = [x_1 a, \cdots, x_n a] = [a_1 x^t, \cdots, a_m x^t]^t
$$

and

$$
B = by^t = [y_1 b, \cdots, y_n b] = [b_1 y^t, \cdots, b_m y^t]^t.
$$

If $A + B$ has exactly one nonzero i^{th} row or exactly one nonzero j^{th} column, so do A and B. In this case, A and B have an irreducible common left factor $e^{(m)}_i$ or an irreducible common right factor $e^{(n)}_j$. Thus we can assume that $A + B$ has at least two nonzero rows and at least two nonzero columns. Furthermore, without loss of generality, we may assume that columns of $A + B$ are all nonzero.

Case 1) $x_i y_i = 0$ for some $i \in \{1, \cdots, n\}$. If $x_i = 0$, then $y_i \neq 0$ because $A + B$ has no zero column. Since A is not a zero matrix, there exists an index j different from i such that $x_j \neq 0$. Therefore, the i^{th} and j^{th} columns of $A + B$ are $y_i b$ and $x_j a + y_j b$, respectively. Since $fr(A + B) = 1$, there exist nonzero scalars α, β in \mathbb{Z} such that $\alpha y_i b = \beta (x_j a + y_j b)$, equivalently $\beta x_j a = (\alpha y_i - \beta y_j) b$. Since $\beta x_j \neq 0$, we have $\alpha y_i - \beta y_j \neq 0$. It follows from Proposition 2.2 that $a \simeq b$. Similarly, a parallel argument holds if $y_i = 0$.

Case 2) $x_i y_i \neq 0$ for all $i = 1, \cdots, n$. Consider any distinct i^{th} and j^{th} columns of $A + B$. Since $fr(A + B) = 1$, there exist two nonzero scalars α and β in \mathbb{Z} such
that $\alpha(x; a + y; b) = \beta(x; a + y; b)$, equivalently $(\alpha x_i - \beta x_j) a = (\beta y_j - \alpha y_i) b$. If $\alpha x_i - \beta x_j \neq 0$, then we have $\beta y_j - \alpha y_i \neq 0$. By Proposition 2.2, we have $a \simeq b$. Now, if $\alpha x_i - \beta x_j = 0$, then $\alpha x_i - \beta x_j = \beta y_j - \alpha y_i = 0$. Thus,

\[
\alpha x_i = \beta x_j \quad \text{and} \quad \beta y_j = \alpha y_i.
\]

This shows that $x_i y_j = x_j y_i$ for all $i, j = 1, \ldots, n$. Thus there exist nonzero integers s and t such that $sx_i = ty_i$ for all $i = 1, \ldots, n$. Therefore we have $sx = ty$. It follows from Proposition 2.2 that $x \simeq y$. Thus we have shown the sufficiency.

The necessity is an immediate consequence. \hfill \Box

3. Factor rank-1 preserver

Suppose that T is a linear operator on $\mathcal{M}_{m \times n}(\mathbb{Z})$. Then T is a

(i) (U, V)-operator if there exist nonsingular matrices U in $\mathcal{M}_{m \times m}(\mathbb{Z})$ and V in $\mathcal{M}_{n \times n}(\mathbb{Z})$ such that $T(X) = UXV$ for all X in $\mathcal{M}_{m \times n}(\mathbb{Z})$, or $m = n$ and $T(X) = UX^tV$ for all X in $\mathcal{M}_{m \times n}(\mathbb{Z})$, where X^t denotes the transpose of X;

(ii) factor rank preserver if $fr(T(X)) = fr(X)$ for all X in $\mathcal{M}_{m \times n}(\mathbb{Z})$;

(iii) factor rank-k preserver if $fr(T(X)) = k$ whenever $fr(X) = k$ for all X in $\mathcal{M}_{m \times n}(\mathbb{Z})$.

Lemma 3.1. If T is a (U, V)-operator on $\mathcal{M}_{m \times n}(\mathbb{Z})$, then T is an injective factor rank preserver.

Proof. It follows directly from the definition of a (U, V)-operator. \hfill \Box

Consider $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ and a linear operator T on $\mathcal{M}_{2 \times 2}(\mathbb{Z})$ defined by $T(X) = AX$ for all X in $\mathcal{M}_{2 \times 2}(\mathbb{Z})$. Then T is a (U, V)-operator because A is nonsingular. Clearly, T is injective. But T is not surjective: for any cell E_{ij} in $\mathbb{E}_{2, 2}$, there is not a matrix X in $\mathcal{M}_{2 \times 2}(\mathbb{Z})$ such that $T(X) = E_{ij}$. Therefore a (U, V)-operator on $\mathcal{M}_{m \times n}(\mathbb{Z})$ may not be invertible.

For any matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ in $\mathcal{M}_{m \times n}(\mathbb{Z})$, let $A \circ B$ denote the Hadamard (or Schur) product, the $(i, j)^{th}$ entry of $A \circ B$ is $a_{ij}b_{ij}$.

Lemma 3.2. Let $B = [b_{ij}]$ be a factor rank-1 matrix in $\mathcal{M}_{m \times n}(\mathbb{Z})$. Then there exist diagonal matrices D in $\mathcal{M}_{m \times m}(\mathbb{Z})$ and E in $\mathcal{M}_{n \times n}(\mathbb{Z})$ such that $X \circ B = DXE$ for all X in $\mathcal{M}_{m \times n}(\mathbb{Z})$.

Proof. If $fr(B) = 1$, then there exist vectors $d = [d_1, d_2, \ldots, d_m]^t$ and $e = [e_1, e_2, \ldots, e_n]^t$ such that $B = de^t$, equivalently $b_{ij} = d_i e_j$ for all $i = 1, \ldots, m$ and $j = 1, \ldots, n$. Let $D = diag(d_1, \ldots, d_m)$ and $E = diag(e_1, \ldots, e_n)$. Now, the $(i, j)^{th}$ entry of $X \circ B$ is $x_{ij}b_{ij}$ and the $(i, j)^{th}$ entry of DXE is $d_i x_{ij} e_j = x_{ij}b_{ij}$. Therefore we have the results. \hfill \Box
Theorem 3.3. Let T be a linear operator on $\mathbb{M}_{m \times n}$. Then T is an injective factor rank-1 preserver if and only if T is a (U,V)-operator.

Proof. The sufficiency follows from Lemma 3.1. So, we shall show the necessity. For any cell E_{ij} in $\mathbb{M}_{m,n}$, we can write $T(E_{ij}) = u_{ij}^T v_{ij}$ for all $i = 1, \ldots, m$ and $j = 1, \ldots, n$, where $u_{ij} \in \mathbb{Z}^n$ and $v_{ij} \in \mathbb{Z}^n$ are nonzero vectors. Let j and k be arbitrary integers in $\{1, \ldots, n\}$. Since $E_{ij} + E_{ik}$ is of factor rank-1, the factor rank of $T(E_{ij} + E_{ik}) = u_{ij}^T v_{ij} + u_{ik}^T v_{ik}$ must be 1. It follows from Lemma 2.3 that $u_{ij} \simeq u_{ik}$ or $v_{ij} \simeq v_{ik}$. Now, we will show that for a fixed i in $\{1, \ldots, m\}$, either

$$u_{i1} \simeq u_{i2} \simeq \cdots \simeq u_{in} \quad \text{or} \quad v_{i1} \simeq v_{i2} \simeq \cdots \simeq v_{in}. \quad (3.1)$$

Suppose that $v_{i1} \not\simeq v_{ij}$ for some index j. By Lemma 2.3, we have $u_{i1} \simeq u_{ij}$ because $fr(T(E_{i1} + E_{ij})) = 1$. If $u_{i1} \not\simeq u_{ik}$ for some index k, then we have $v_{i1} \simeq v_{ik}$ by Lemma 2.3. Therefore $v_{ij} \not\simeq v_{ik}$ because \simeq is an equivalence relation. But then $u_{ij} \simeq u_{ik}$ and this would imply $u_{i1} \simeq u_{ik}$ because $u_{ij} \simeq u_{ij}$. This contradicts to $u_{i1} \not\simeq u_{ik}$, and thus (3.1) is established.

Similarly, we can show that for a fixed j in $\{1, \ldots, n\}$, either

$$u_{1j} \simeq u_{2j} \simeq \cdots \simeq u_{mj} \quad (3.2)$$

or

$$v_{1j} \simeq v_{2j} \simeq \cdots \simeq v_{mj}. \quad (3.3)$$

If $u_{i1} \simeq u_{i2} \simeq \cdots \simeq u_{in}$, there exist an irreducible vector p_i in \mathbb{Z}^m and nonzero integers c_j such that $u_{ij} = c_j p_i$ for all $j = 1, \ldots, n$. Thus we have $T(E_{ij}) = p_i(c_j v_{ij})$ for all $j = 1, \ldots, n$. We can therefore restate (3.1) as follows. For a fixed i in $\{1, \ldots, m\}$, either

$$u_{i1} = u_{i2} = \cdots = u_{in} = p_i \quad (3.4)$$

or

$$v_{i1} = v_{i2} = \cdots = v_{in} = q_i, \quad (3.5)$$

where p_i and q_i are irreducible vectors.

Assume that (3.4) holds for some i. If $v_{i1}, v_{i2}, \ldots, v_{in}$ are linearly dependent, then there exist $\alpha_1, \alpha_2, \cdots, \alpha_n$ in \mathbb{Z}, not all zeros, such that $\sum_{j=1}^{n} \alpha_j v_{ij} = 0$. Consider a factor rank-1 matrix $X = \sum_{j=1}^{n} \alpha_j E_{ij}$. Then we have

$$T(X) = T\left(\sum_{j=1}^{n} \alpha_j E_{ij}\right) = p_i \left(\sum_{j=1}^{n} \alpha_j v_{ij}\right) = 0,$$
exist an irreducible vectors

follows from (3.2) that there exist nonzero integers

for all $j = 1, \ldots, n$, and consequently (3.4) must hold for all i. Suppose that (3.2) holds for some $j = 1, \ldots, n$. Then $u^{ij} (= p_i)$ appears both in (3.4) and (3.2). It follows from (3.2) that there exist nonzero integers α_s such that $u^{ij} = \alpha_s p_i$ for all $s = 1, \ldots, m$. Note that $v_{i1}, v_{i2}, \ldots, v_{in}$ are linearly independent since (3.4) is satisfied. By Lemma 2.1, there exist nonzero integer β_s and integers β_{sk}, not all zero, such that $\beta_s v_{sj} = \sum_{k=1}^n \beta_{sk} v_{ik}$ for all $s = 1, \ldots, m$. Then we have

$$\beta_s u^{ij} v_{sj}^t = \sum_{k=1}^n \beta_{sk} u^{ij} v_{ik} = \sum_{k=1}^n \beta_{sk} \alpha_s p_i v_{ik}^t = \sum_{k=1}^n \beta_{sk} \alpha_s u^{ik} v_{ik}^t,$$

equivalently $T(\beta_s E_{ij}) = T\left(\sum_{k=1}^n \beta_{sk} \alpha_s E_{ik} \right)$ for all $s \in \{1, \ldots, m\} \setminus \{i\}$. This contradicts to the fact that T is injective. Thus we have established that either

(3.6)

$$u^{ij} = p_i \quad \text{and} \quad v_{ij} = b_{ij} q_j$$

for all $i = 1, \ldots, m$ and $j = 1, \ldots, n$, where p_1, \ldots, p_m and q_1, \ldots, q_n are linearly independent irreducible vectors and b_{ij} are nonzero integers, or

(3.7)

$$v_{ij} = q_i \quad \text{and} \quad u^{ij} = b_{ij} p_j$$

for all $i = 1, \ldots, m$ and $j = 1, \ldots, n$, where q_1, \ldots, q_m and p_1, \ldots, p_n are linearly independent irreducible vectors and b_{ij} are nonzero integers.

If $m \neq n$, (3.7) is not possible. For, if $m < n$, then the set $\{p_1, \ldots, p_m\}$ would be linearly dependent by Lemma 2.1. Similar conclusion follows if $m > n$. Hence, if $m \neq n$, only (3.6) is possible.

Assume that (3.6) holds. Let U' be the $m \times m$ matrix whose columns are p_1, \ldots, p_m and let V' be the $n \times n$ matrix whose rows are q_1, \ldots, q_n. Then U' and V' are nonsingular, and

$$T(E_{ij}) = u^{ij} v_{ij}^t = p_{i1} b_{ij} q_j^t = U'(b_{ij} E_{ij}) V'$$

for all $i = 1, \ldots, m$ and $j = 1, \ldots, n$. It follows that for any matrix X in $\mathcal{M}_{m \times n}(\mathbb{Z})$, we have $T(X) = U'(X \circ B) V'$, where $B = [b_{ij}]$ as above. Now, we claim $fr(B) = 1$.

If not, there exists a 2×2 submatrix $B' = \begin{bmatrix} b_{ij} & b_{ik} \\ b_{ij} & b_{ik} \end{bmatrix}$ of B such that $fr(B') = 2$. Consider a factor rank-1 matrix $Y = E_{ij} + E_{ik} + E_{ij} + E_{ik}$. Then the factor rank of

$$T(Y) = p_i (b_{ij} q_j + b_{ik} q_k)^t + p_l (b_{lj} q_j + b_{lk} q_k)^t$$

must be 1. Since $p_i \neq p_l$, it follows that $b_{ij} q_j + b_{ik} q_k \simeq b_{lj} q_j + b_{lk} q_k$. Therefore there exist an irreducible vectors q and nonzero integers α and β such that $b_{ij} q_j + b_{ik} q_k =$
\[\alpha q \text{ and } b_{ij}q_{ij} + b_{ik}q_{ik} = \beta q, \text{ equivalently } (b_{ij}\beta - b_{ij}\alpha)q_{ij} = (b_{ik}\alpha - b_{ik}\beta)q_{ik}. \] It follows from \(q_{ij} \neq q_{ik} \) that \(b_{ij}\beta - b_{ij}\alpha = b_{ik}\alpha - b_{ik}\beta = 0 \) so that \(b_{ij}b_{ik} = b_{ik}b_{ij} \). This implies that the factor rank of \(B' \) is 1, a contradiction. Therefore we have \(fr(B) = 1 \). By Lemma 3.2, there exist diagonal matrices \(D \) in \(\mathcal{M}_{m \times m}(\mathbb{Z}) \) and \(E \) in \(\mathcal{M}_{n \times n}(\mathbb{Z}) \) such that \(X \circ B = DXE \) for all \(X \) in \(\mathcal{M}_{m \times n}(\mathbb{Z}) \). Since \(B \) has no zero entries, it follows that \(D \) and \(E \) are nonsingular. Let \(U = U'D \) and \(V = EV' \). Then \(U \) and \(V \) are nonsingular. Furthermore, we have \(T(X) = UXV \) for all matrix \(X \) in \(\mathcal{M}_{m \times n}(\mathbb{Z}) \). Therefore \(T \) is a \((U, V)\)-operator.

If (3.7) holds, then \(m = n \) and we can easily establish that for any matrix \(X \) in \(\mathcal{M}_{m \times n}(\mathbb{Z}) \), \(T(X) = UXV \) for some \(n \times n \) nonsingular matrices \(U \) and \(V \). Therefore \(T \) is a \((U, V)\)-operator. \(\square \)

4. Factor rank preserver

In this section, we characterize the linear operators which preserve the factor rank of all matrices over the ring of integers.

Proposition 4.1. Let \(A \) and \(B \) be matrices in \(\mathcal{M}_{m \times n}(\mathbb{Z}) \) with \(\alpha A \neq \beta B \) for all nonzero scalars \(\alpha, \beta \in \mathbb{Z} \). If \(fr(A) = fr(B) = 1 \), then there exists a factor rank-1 matrix \(C \) in \(\mathcal{M}_{m \times n}(\mathbb{Z}) \) such that \(fr(A + C) = 1 \) and \(fr(B + C) = 2 \).

Proof. Since \(fr(A) = fr(B) = 1 \), it follows from \(\alpha A \neq \beta B \) that either \(fr(A + B) = 2 \) or \(fr(A + B) = 1 \). For the case of \(fr(A + B) = 2 \), the conclusion is satisfied by letting \(C = A \). So we may assume that \(fr(A + B) = 1 \). By Lemma 2.3, \(A \) and \(B \) have an irreducible common factor. If \(A \) and \(B \) have an irreducible common left factor, then we may write \(A \) and \(B \) as

\[
A = a x^t = [x_1a, \cdots, x_na] \quad \text{and} \quad B = a y^t = [y_1a, \cdots, y_na],
\]

where \(a \) is an irreducible vector. Then we have \(\alpha x \neq \beta y \) for all nonzero integers \(\alpha \) and \(\beta \) because \(\alpha A \neq \beta B \). Since \(a = [a_i] \) is not zero-vector, \(a_i \neq 0 \) for some \(i = 1, \cdots, m \). Let

\[
C = \begin{cases}
 e_{(m)}^{(i)} x^t & \text{if } a_j = 0 \text{ for some } j \neq i, \\
 e_{(m)}^{(i)} x^t & \text{otherwise.}
\end{cases}
\]

Then \(C \) is a matrix in \(\mathcal{M}_{m \times n}(\mathbb{Z}) \) with \(fr(C) = 1 \). Moreover \(fr(A + C) = 1 \) because \(A \) and \(C \) have a common right factor. But \(B \) and \(C \) have neither a common left factor nor a common right factor. It follows from Lemma 2.3 that \(fr(B + C) = 2 \).

Similarly, a parallel argument holds if \(A \) and \(B \) have an irreducible common right factor. \(\square \)

Lemma 4.2. Let \(T \) be a factor rank-1 preserver on \(\mathcal{M}_{m \times n}(\mathbb{Z}) \). If \(T \) is not injective, then \(T \) decreases the factor rank of some factor rank-2 matrix.

Proof. By the similar proof to that of Theorem 3.3, we can see that \(T \) is a \((U, V)\)-operator if \(T \) is a factor rank-1 preserver and is injective in the set of all factor rank-1
matrices in $M_{m \times n}(\mathbb{Z})$. If T is not injective, then T is not a (U, V)-operator. From above fact we have that T is not injective in the set of all factor rank-1 matrices in $M_{m \times n}(\mathbb{Z})$. Thus there exist distinct factor rank-1 matrices X and Y such that $T(X) = T(Y)$. Suppose that there exist distinct nonzero integers α and β such that $\alpha X = \beta Y$. Then we have

$$\alpha T(X) = T(\alpha X) = T(\beta Y) = \beta T(Y) = \beta T(X).$$

Since \mathbb{Z} has no zero divisors and $T(X) \neq O$, we have $\alpha = \beta$, a contradiction. So, we may assume that $\alpha X \neq \beta Y$ for all nonzero scalars $\alpha, \beta \in \mathbb{Z}$. By Proposition 4.1, there exists a factor rank-1 matrix C such that $fr(X + C) = 1$ while $fr(Y + C) = 2$.

But we then have $T(Y + C) = T(X + C)$ so that $fr(T(Y + C)) = fr(T(X + C)) = 1$ because T is a factor rank-1 preserver. Therefore T decreases the factor rank of some factor rank-2 matrix. □

Theorem 4.3. Let T be a linear operator on $M_{m \times n}(\mathbb{Z})$. Then the following are equivalent:

(i) T is an injective factor rank-1 preserver;

(ii) T is a (U, V)-operator;

(iii) T is a factor rank preserver;

(iv) T is a factor rank-1 and factor rank-2 preserver.

Proof. It follows from Theorem 3.3 that (i) and (ii) are equivalent. Statement (ii) implies (iii) by Lemma 3.1. Clearly, (iii) implies (iv). Lemma 4.2 shows if T preserves the factor ranks of all factor rank-1 matrices and factor rank-2 matrices, then T is injective. Thus, (iv) implies (i). □

Thus we have characterized the linear operators that preserve the factor rank of integer matrices.

References

