The Seifert Matrices of Periodic Links with Rational Quotients

SANG YOUL LEE
Department of Mathematics, Pusan National University, Pusan 609-735, Korea
e-mail: sangyoul@pusan.ac.kr

MAENG-SANG PARK
Department of Mathematics, Graduate School of Natural Sciences, Pusan National University, Pusan 609-735, Korea
e-mail: msjocund@hanmail.net

MYOUNGSOO SEO
Department of Mathematics, Pusan National University, Pusan 609-735, Korea
e-mail: myseo@kebi.com

Abstract. In this paper, we characterize the Seifert matrices of \(p \)-periodic links whose quotients are 2-bridge links \(C(2, n_1, -2, n_2, \ldots, n_r, (-1)^r) \) and give formulas for the signatures and determinants of the 3-periodic links of these kind in terms of \(n_1, n_2, \ldots, n_r \).

1. Introduction

A link \(L \) in \(S^3 \) is called a \(p \)-periodic link (\(p \geq 2 \) an integer) if there exists an orientation preserving auto-homeomorphism \(h \) of \(S^3 \) such that \(h(L) = L \), \(h \) is of order \(p \) and the set of fixed points of \(h \) is a circle disjoint from \(L \). In this paper, we are interested in a special class of periodic knots and links.

A link in \(S^3 \) is called a \(p \)-periodic link with rational quotient if it is obtained as the preimage of one component of a 2-bridge link in \(S^3 \) by the \(p \)-fold branched cyclic covering branched along the other component. In [5], the authors introduced a special kind of Conway’s normal form \(C(2, n_1, -2, n_2, \ldots, n_r, (-1)^r) \) of a 2-bridge link with two components and studied the excellent component of the character variety of periodic knots in \(S^3 \) with rational quotient. In [10], the authors re-examined this presentation to study the Alexander polynomials of 2-bridge links and periodic links in \(S^3 \) with rational quotients in terms of \(n_1, n_2, \ldots, n_r \). In [7, 11], the authors gave formulas for the Casson knot invariant and the \(\Delta \)-unknotting number of \(p \)-periodic knots with rational quotients via \(n_1, n_2, \ldots, n_r \).

Received October 23, 2006.
2000 Mathematics Subject Classification: 57M25.
Key words and phrases: signature, determinant, Seifert matrix, periodic link, 2-bridge link, tridiagonal matrix.
This work was supported for two years by Pusan National University Research Grant.
The purpose of this paper is to give a characterization of the Seifert matrices of periodic links with rational quotients and to study the properties of numerical invariants of the Seifert matrices. In Section 2, we review presentations of 2-bridge links and p-periodic links with rational quotients. In Section 3, we show that the Seifert matrices of $(p + 1)$-periodic links with rational quotient $C(2, n_1, -2, n_2, \ldots, n_r, (1)^{r}2)$ is S-equivalent to a $p \times p$ block tridiagonal matrix in which each block is also a $r \times r$ tridiagonal matrix whose entries are completely determined by the integers n_1, n_2, \ldots, n_r. In Section 4, we give formulas for the signature and determinant of a 3-periodic link with rational quotient $C(2, n_1, -2, n_2, \ldots, n_r, (1)^{r}2)$ in terms of n_1, n_2, \ldots, n_r.

2. Periodic links with rational quotients

To each pair (α, β) of two co-prime integers subject to the condition that β is odd and $0 < |\beta| < \alpha$, Schubert [14] associated an oriented diagram on the 2-sphere S^2 of an oriented 2-bridge knot (α odd) or link (α even) L in S^3, now called the Schubert normal form of L and denoted by $S(\alpha, \beta)$, and showed that any (oriented) 2-bridge knots and links in S^3 can be represented in this way. Two such pairs of integers (α, β) and (α', β') define an equivalent oriented (resp. unoriented) knot or link if and only if

$$\alpha = \alpha' \text{ and } \beta^{k+1} \equiv \beta' \mod 2\alpha \text{ (resp. mod } \alpha),$$

where β^{-1} denotes the integers with the properties $0 < \beta^{-1} < 2\alpha$ and $\beta \beta^{-1} \equiv 1 \mod 2\alpha$.

Let $[a_1, a_2, \ldots, a_n]$ denote the continued fraction of α/β:

$$[a_1, a_2, \ldots, a_n] \equiv a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \ddots + \cfrac{1}{a_n}}} = \frac{\alpha}{\beta},$$

Then $L = S(\alpha, \beta)$ has also a diagram $C(a_1, a_2, \ldots, a_n)$, called Conway normal form of L, as shown in Figure 1, depending on whether n is even or odd [1]. The integral tangles in Figure 1, which are rectangles labeled a_i, are the 2-braids with $|a_i|$ crossings as shown in Figure 2. It is well known that $L = S(\alpha, \beta)$ admits a diagram $C(2b_1, 2b_2, \ldots, 2b_n)$, which is equivalent to $C(a_1, a_2, \ldots, a_n)$ [6].

It is known [5], [10] that the 2-bride link $L = S(\alpha, \beta)(\alpha$ even) can also be represented by Conway diagram of the form $C(2, n_1, -2, n_2, \ldots, n_r, (1)^{r}2)$ as shown in Figure 3. We choose an orientation of the 2-bride link $C(2, n_1, -2, n_2, \ldots, n_r, (1)^{r}2)$ as shown in Figure 3. Then it is easy to see that the diagram shown in Figure 3 can be deformed to the diagrams in Figure 4 by using Reidemeister moves. Throughout this paper, an oriented 2-bride link L in S^3 represented by the Conway normal form $C(2, n_1, -2, n_2, \ldots, n_r, (1)^{r}2)$ is denoted by $L = C[[n_1, n_2, \ldots, n_r]].$
A link L in S^3 is called a p-periodic link ($p \geq 2$ an integer) if there exists an orientation preserving auto-homeomorphism h of S^3 such that $h(L) = L$, h is of order p and the set $\text{Fix}(h)$ of fixed points of h is a circle disjoint from L. In this case, the link $L/\langle h \rangle \cup \text{Fix}(h)$ in the orbit space $S^3/\langle h \rangle \cong S^3$ is called the quotient link of L. Let K be an oriented link in S^3 and U an oriented trivial knot with $K \cap U = \emptyset$. For any integer $p \geq 2$, let $\phi_p^U : \Sigma^3 \to S^3$ be a p-fold branched cyclic covering branched along U. Then Σ^3 is homeomorphic to the 3-sphere S^3. Then $(\phi_p^U)^{-1}(K)$ is a p-periodic link in Σ^3 with $L = K \cup U$ as its quotient link. We give an orientation to $(\phi_p^U)^{-1}(K)$ induced by the orientation of K. Note that any periodic knot or link in S^3 arises in this manner.

Definition 2.1. A link \tilde{L} in S^3 is called a p-periodic link with rational quotient if it is a p-periodic link whose quotient link is a 2-bridge link, or equivalently, if there exists a 2-bridge link $L = U_1 \cup U_2$ in S^3 such that \tilde{L} is equivalent to the preimage $(\phi_p^{U_2})^{-1}(U_1)$ of the component U_1 of L by a p-fold cyclic covering $\phi_p^{U_2} : \Sigma^3 \to S^3$ branched along the component U_2 of L.

Note that each component U_1 and U_2 of L is a trivial knot and they can be interchanged each other by an orientation preserving homeomorphism of
This implies that \((\phi_{U_1}^p)^{-1}(U_1)\) is equivalent to \((\phi_{U_2}^p)^{-1}(U_2)\). Now let
\[
L = \overrightarrow{C}[n_1, n_2, \ldots, n_r] = U_1 \cup U_2
\]
be an oriented 2-bridge link as shown Figure 4. Then the diagram, \(D^{(p)}\), shown in Figure 5 is a canonical oriented \(p\)-periodic diagram of the oriented \(p\)-periodic link \((\phi_{U_2}^p)^{-1}(U_1)\) with rational quotient
\[
L = \overrightarrow{C}[n_1, n_2, \ldots, n_r].
\]
In what follows, we shall denote the oriented \(p\)-periodic link \((\phi_{U_2}^p)^{-1}(U_1)\) by \(L^{(p)}\) or \(\overrightarrow{C}[n_1, n_2, \ldots, n_r]^{(p)}\) for our convenience. Then any \(p\)-periodic link with rational quotient can be represented by \(\overrightarrow{C}[n_1, n_2, \ldots, n_r]^{(p)}\) for some nonzero integers \(n_1, n_2, \ldots, n_r\) [7], [10].

3. Seifert matrices

We begin with a brief review of Seifert matrix of a link in \(S^3\) from Chapter 5 in [13].

A Seifert surface for a link in \(S^3\) is a connected compact orientable surface embedded in \(S^3\) with its boundary \(L\). In [15], Seifert proved the existence of Seifert surface for a link \(L\) applying \(L\) an algorithm, called Seifert’s algorithm, on a diagram of \(L\). Let \(L\) be a link and \(F\) its Seifert surface. There is an embedding \(F \times [-1, 1] \rightarrow S^3\) such that \(b(F \times \{0\}) = F\) and \(b(F \times \{1\})\) lies on the positive side of \(F\). For any simple closed curve \(x \in F\), let \(x^+ = b(x \times \{1\})\) and \(x^- = b(x \times \{-1\})\). Since \(H_1(F)\) is a free abelian group of finite rank \(n\) and is generated by simple closed oriented curves \(x_1, \ldots, x_n\), we can define a bilinear form \(\phi : H_1(F) \times H_1(F) \rightarrow \mathbb{Z}\)
This is called the Seifert pairing or linking form of \(F \). The \(n \times n \) matrix \(M = (m_{i,j}) \) defined by

\[
m_{i,j} = \phi(x_i, x_j)
\]

is called a Seifert matrix of \(L \) associated to \(F \). The Seifert matrix of \(L \) depends on the Seifert surface \(F \) and the choice of generators of \(H_1(F) \).

Theorem 3.1 ([13]). Two Seifert matrices obtained from two equivalent links can be changed from one to the other by applying, a finite number of times, the following two operations \(\Lambda_1 \) and \(\Lambda_2 \), and their inverses:

\(\Lambda_1 : M_1 \longrightarrow PM_1P^T \), where \(P \) is an invertible matrix with \(\det P = \pm 1 \) and \(P^T \) denotes the transpose matrix of \(P \).

\(\Lambda_2 : M_1 \longrightarrow M_2 = \begin{pmatrix} M_1 & \mathbf{v} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \) or \(\begin{pmatrix} M_1 & 0 & 0 \\ \mathbf{v} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \),

where \(\mathbf{v} \) denotes an arbitrary integral row or column vector, and \(\mathbf{0} \) the row or column zero vector.

Two square matrices \(M \) and \(M' \) are said to be \(S \)-equivalent if one is obtained from the other by applying the operations \(\Lambda_1, \Lambda_2 \) and the inverse \(\Lambda_2^{-1} \), a finite number of times.

For any real number \(y \), let \(\lfloor y \rfloor \) denote the largest integer less than or equal to \(y \).

Theorem 3.2. For given nonzero integers \(n_1, n_2, \ldots, n_r \) (\(r \geq 1 \)) and a positive
integer $p \geq 1$, let A, B and C be $r \times r$ tridiagonal matrices with integral entries given by

\[
A = \begin{bmatrix}
\alpha_1 & \epsilon_1 - 1 & & & \\
& \alpha_2 & \epsilon_2 - 1 & & \\
& & \ddots & \ddots & \\
& & & \alpha_{r-1} & \epsilon_{r-1} - 1 \\
& & & & \alpha_r
\end{bmatrix},
\]

\[
B = \begin{bmatrix}
\beta_1 & & & & \\
\epsilon_1 & \beta_2 & & & \\
& \epsilon_2 & \ddots & & \\
& & \ddots & \beta_{r-1} & \\
& & & \epsilon_{r-1} & \beta_r
\end{bmatrix},
\]

\[
C = \begin{bmatrix}
-n_1 & 1 - \epsilon_1 & & & \\
\epsilon_1 & -n_2 & 1 - \epsilon_2 & & \\
& \ddots & \ddots & \ddots & \\
& & \epsilon_{r-2} & -n_{r-1} & 1 - \epsilon_{r-1} \\
& & & \epsilon_{r-1} & -n_r
\end{bmatrix},
\]

where $\alpha_i = \left\lfloor \frac{n_i + 1 - \epsilon_i - 1}{2} \right\rfloor$, $\beta_i = \left\lfloor \frac{n_i + \epsilon_i - 1}{2} \right\rfloor$ and $\epsilon_i = 1$ if $n_1 + n_2 + \cdots + n_i + i$ is even and $\epsilon_i = 0$ otherwise. Suppose that $L^{(p+1)}$ is the $(p+1)$-periodic link in S^3 with rational quotient $L = C[[n_1, n_2, \ldots, n_r]]$. Then a Seifert matrix of $L^{(p+1)}$ is
S-equivalent to the $p \times p$ block tridiagonal matrix

$$M = \begin{bmatrix}
C & B & & & \\
A & C & B & & \\
& A & C & B & \\
& & \ddots & \ddots & \ddots \\
& & & A & C & B \\
& & & & A & C
\end{bmatrix}.$$

Proof. Let $D^{(p+1)}$ be the diagram of $L^{(p+1)}$ as shown in Figure 5 and let F be the Seifert surface of $L^{(p+1)}$ obtained by applying Seifert algorithm to $D^{(p+1)}$. Let $\{x_{i,j} | 1 \leq i \leq p, 1 \leq j \leq r\}$ be the set of simple closed curves which represent the generators of $H_1(F)$. We assign the clockwise orientation to each curves $x_{i,j}$. For example, see Figure 6. In Figure 6, there are the Seifert surface F of $C[[2,1, -2]]^{(3)}$ obtained by applying Seifert algorithm and simple closed curves representing the generators of F. For each 4-tuple (i,j,k,l) with $1 \leq i,k \leq p$ and $1 \leq j,l \leq r$, we can calculate that

$$lk(x_{i,j}, x_{k,l}^+) = \begin{cases}
-n_j & \text{if } k = i, l = j, \\
\epsilon_{j-1} & \text{if } k = i, l = j - 1, \\
-\epsilon_{j-1} & \text{if } k = i+1, l = j - 1, \\
1 - \epsilon_j & \text{if } k = i, l = j + 1, \\
-1 + \epsilon_j & \text{if } k = i - 1, l = j + 1, \\
\alpha_j & \text{if } k = i - 1, l = j, \\
\beta_j & \text{if } k = i + 1, l = j, \\
0 & \text{otherwise.}
\end{cases}$$

(3.1)

Consider the simple closed curves $x_{1,1}, x_{1,2}, \cdots, x_{1,r}, \ x_{2,1}, x_{2,2}, \cdots, x_{2, r}, \cdots, x_{p,1}, x_{p,2}, \cdots, x_{p, r}$ and let $M = (m'_{a,b})$ be the $rp \times rp$ Seifert matrix defined by

$$m'_{a,b} = lk(x_{i,j}, x_{k,l}^+)$$
where \(a = r(i - 1) + j \) and \(b = r(k - 1) + l \). We can partition the matrix \(M' \) into \(r \times r \) submatrices of \(M' \) as follows:

\[
M' = (M'_{i,j}), \quad M'_{i,j} = (m''_{k,l}) \]

where \(m''_{k,l} = m'_{r(i-1)+k,r(j-1)+l} \). From (3.1), we can see that \(M'_{i,j} = \)

\[
\begin{cases}
 C & \text{if } j = i, \\
 A & \text{if } j = i - 1, \\
 B & \text{if } j = i + 1, \\
 O & \text{otherwise},
\end{cases}
\]

where \(O \) is the \(r \times r \) zero matrix. Hence \(M' = M \). This completes the proof. □

Example 3.3. Let \(L^{(3)} \) be the 3-periodic link with rational quotient \(L = \mathbb{C}[[2,1,-2]] \). Let \(F \) be a Seifert surface obtained by applying Seifert algorithm to a diagram as described in Figure 6. Consider the simple closed curves representing the generator of \(H_1(F) \) as depicted in Figure 6. Then any Seifert matrix \(M \) of \(L^{(3)} \) is \(S \)-equivalent to the matrix of the form:

\[
M = \begin{bmatrix}
-2 & 1 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & -1 \\
1 & -1 & 0 & -2 & 1 & 0 \\
0 & 1 & -1 & 0 & -1 & 1 \\
0 & 0 & -1 & 0 & 0 & 2
\end{bmatrix}
\]

4. Invariants of Seifert matrices

For a real symmetric matrix \(A \), there exists an invertible matrix \(P \) such that \(PAP^T = B \) is a diagonal matrix. By Sylvester’s Theorem in Linear Algebra, the sum of signs of the entries in the diagonal of \(B \), called the signature of \(A \) and is denoted by \(\sigma(A) \), is independent on the diagonalization. It is well known that two \(S \)-equivalent symmetric matrices have the same signature. Now let \(M \) be a Seifert matrix of a link \(L \). Then the signature \(\sigma(L) \) of \(L \) is defined by

\[
\sigma(L) = \sigma(M + M^T).
\]

Note that \(\sigma(L) \) is a link invariant [13].

For given nonzero integers \(n_1, n_2, \ldots, n_r \) \((r \geq 1) \), let \(L^{(p+1)} \) be the \((p+1) \)-periodic link in \(S^3(p \geq 1) \) with rational quotient \(L = \mathbb{C}[[n_1,n_2,\ldots,n_r]] \). Let \(M \) be the Seifert matrix of \(L^{(p+1)} \) given by Theorem 3.2 above and \(S = M + M^T \). Then
S is the $p \times p$ symmetric block tridiagonal matrix given by

$$S = \begin{bmatrix} E & F^T & & & & \\ F & E & F^T & & & \\ & F & E & F^T & & \\ & & \ddots & \ddots & \ddots & \\ & & & F & E & F^T \\ & & & & F & E \end{bmatrix},$$

(4.2)

where E and F are $r \times r$ tridiagonal matrices given by

$$E = \begin{bmatrix} -2n_1 & 1 & & & & \\ 1 & -2n_2 & 1 & & & \\ & \ddots & \ddots & \ddots & & \\ & & 1 & -2n_{r-1} & 1 & \\ & & & 1 & -2n_r \end{bmatrix},$$

$$F = \begin{bmatrix} n_1 & -1 & & & & \\ n_2 & -1 & & & & \\ & \ddots & \ddots & \ddots & & \\ & & n_{r-1} & -1 & & \\ & & & n_r & \end{bmatrix}.$$

4.1. Signatures of 2-periodic links with rational quotients. For given nonzero integers n_1, n_2, \ldots, n_r ($r \geq 1$), let $L^{(2)}$ be the 2-periodic link in S^3 with rational quotient $L = \overline{C}([n_1, n_2, \ldots, n_r])$. Let M denote the Seifert matrix of $L^{(2)}$ given by Theorem 3.2 above and set $S = M + M^T$. From (4.2), we know that $S = E$.

In [7], the authors show that $L^{(2)}$ is the 2-bridge knot with Conway normal form $C(-2n_1, -2n_2, \ldots, -2n_r)$. For each $k = 1, 2, \ldots, r$, we define a rational number $<k>$ by

$$<k> = \begin{cases} -2n_1 & \text{if } k = 1, \\ -2n_k - \frac{1}{k-1} & \text{if } k = 2, 3, \ldots, r. \end{cases}$$

We know that all $<k>$ is not equal to zero. We can calculate that

$$S_2 = VDV^T,$$

where D is the diagonal matrix with diagonal entries $<1>, <2>, \ldots, <r>$ and V is the
$r \times r$ tridiagonal matrices given by

$$V = \begin{bmatrix}
\frac{1}{n_1} & 1 & \frac{1}{2} & 1 \\
& \ddots & \ddots & \ddots \\
& & \frac{1}{r-2} & 1 \\
& & & \frac{1}{r-1} & 1
\end{bmatrix}.$$

Since all n_k are nonzero, it follows that $0 < \frac{1}{|n_k|} < 1$ and hence the sign of $\langle k \rangle$ is opposite to the sign of n_k. Therefore the signature of 2-periodic link $L^{(2)}$ with rational quotient $L = \mathbb{C}[[n_1, n_2, \cdots, n_r]]$ is given by

$$\sigma(L^{(2)}) = -\sum_{i=1}^{r} \frac{n_i}{|n_i|}.$$

4.2. Signatures of 3-periodic links with rational quotients.

For given nonzero integers n_1, n_2, \cdots, n_r ($r \geq 1$), let $L^{(3)}$ be the 3-periodic link in S^3 with rational quotient $L = \mathbb{C}[[n_1, n_2, \cdots, n_r]]$. Let M denote the Seifert matrix of $L^{(3)}$ given by Theorem 3.2 above and set $S = M + M^T$. From (4.2), we know that S is given by

$$S = \begin{bmatrix}
E & F^T \\
F & E
\end{bmatrix}.$$

For given nonzero integers n_1, n_2, \cdots, n_r, we define the rational numbers $d_1, d_2, \cdots, d_r, w_1, w_2, \cdots, w_{r-2}$ by

$$d_1 = -\frac{3n_1}{2} + \frac{1}{2n_2},$$
$$d_2 = \frac{1}{2n_1} - \frac{3n_2}{2} + \frac{1}{2n_3},$$
$$d_i = \frac{1}{2n_{i-1}} - \frac{3n_i}{2} + \frac{1}{2n_{i+1}} - \frac{1}{4n_{i-1}^2 d_{i-2}}, \quad i = 3, 4, \cdots, r-1,$$
$$d_r = \frac{1}{2n_{r-1}} - \frac{3n_r}{2} - \frac{1}{4n_{r-1}^2 d_{r-2}},$$
$$w_j = \frac{\tau_j}{2n_{j+1} d_j}, \quad j = 1, 2, \cdots, r-2,$$

where $\tau_j = -1$ if $j - 1 \equiv 0 \pmod{3}$ and $\tau_j = 1$ otherwise. Note that if $d_i = 0$, then w_j and d_{j+2} are not defined for all $j = i, i + 1, \cdots, r - 2$.

Theorem 4.1. Let n_1, n_2, \cdots, n_r be given nonzero integers ($r \geq 1$) and let $L^{(3)}$
be the 3-periodic link in S^3 with rational quotient $L = \overline{C}[n_1, n_2, \ldots, n_r]$. Let M be the Seifert matrix of $L^{(3)}$ given by Theorem 3.2 above and set $S = M + M^T$. Suppose that $d_i \neq 0$ for all $i = 1, 2, \ldots, r$. Then there exists an invertible matrix P such that $det P = \pm 1$ and

$$S = PDP^T,$$

where D is the $2r \times 2r$ diagonal matrix with diagonal entries $-2n_1, -2n_2, \ldots, -2n_r, d_1, d_2, \ldots, d_r$.

Proof. Let D_1 and D_2 be the $r \times r$ diagonal matrices with diagonal entries $-2n_1, -2n_2, \ldots, -2n_r$ and d_1, d_2, \ldots, d_r, respectively, and let $G = (g_{ij})$ be the $r \times r$ tridiagonal matrix given by

$$g_{ij} = \begin{cases} -n_i & \text{if } j = i, \\ -1 & \text{if } j = i + 1 \text{ and } i \not\equiv 0 \pmod{3}, \\ 1 & \text{if } j = i + 1 \text{ and } i \equiv 0 \pmod{3}, \\ 1 & \text{if } j = i - 1 \text{ and } j \not\equiv 0 \pmod{3}, \\ -1 & \text{if } j = i - 1 \text{ and } j \equiv 0 \pmod{3}, \\ 0 & \text{otherwise}. \end{cases}$$

Then $D = D_1 \oplus D_2$ and we have that

$$(4.4) \quad \begin{bmatrix} U_1 & U_3 \\ U_2 & U_1 \end{bmatrix} S \begin{bmatrix} U_1 & U_3 \\ U_2 & U_1 \end{bmatrix}^T = \begin{bmatrix} D_1 & G \\ G & D_1 \end{bmatrix},$$

where $U_3 = U_1 - U_2$, $U_1 = (u_{ij})$ and $U_2 = (v_{ij})$ are $r \times r$ diagonal matrices with entries

$$u_{ij} = \begin{cases} 1 & \text{if } i = j \text{ and } i \not\equiv 0 \pmod{3}, \\ 0 & \text{otherwise}, \end{cases}$$

and

$$v_{ij} = \begin{cases} 1 & \text{if } i = j \text{ and } i \not\equiv 1 \pmod{3}, \\ 0 & \text{otherwise}. \end{cases}$$

Now let $W = (w_{ij})$ be the $r \times r$ matrix given by

$$w_{ij} = \begin{cases} 1 & \text{if } j = i, \\ w_j & \text{if } j = i - 2, \\ 0 & \text{otherwise}. \end{cases}$$

By elementary calculations, we obtain that

$$D_1 = GD_1^{-1}G^T + WD_2W^T.$$

Hence it follows that

$$(4.5) \quad \begin{bmatrix} D_1 & G^T \\ G & D_1 \end{bmatrix} = \begin{bmatrix} I & O \\ GD_1^{-1}W & I \end{bmatrix} \begin{bmatrix} D_1 & O \\ O & D_2 \end{bmatrix} \begin{bmatrix} I & O \\ GD_1^{-1}W & I \end{bmatrix}^T.$$
From (4.4) and (4.5), we have \(S = PDPT \), where
\[
P = \begin{bmatrix}
U_1 & U_3 \\
U_2 & U_1
\end{bmatrix}^{-1} \begin{bmatrix}
I & 0 \\
GD_1 & W
\end{bmatrix}.
\]

This completes the proof. \(\square \)

Corollary 4.2. Let \(n_1, n_2, \ldots, n_r \) be given nonzero integers \((r \geq 1)\) and let \(L^{(3)} \) be the 3-periodic link in \(S^3 \) with rational quotient \(L = \overline{C}[n_1, n_2, \ldots, n_r] \). Suppose that \(d_i \neq 0 \) for all \(i = 1, 2, \ldots, r \). Then
\[
\sigma(L^{(3)}) = \sum_{i=1}^{r} \left(\frac{d_i}{|d_i|} - \frac{n_i}{|n_i|} \right).
\]

Proof. The result follows from Theorem 4.1 at once. \(\square \)

Corollary 4.3. Let \(n_1, n_2, \ldots, n_r \) be given nonzero integers \((r \geq 1)\) and let \(L^{(3)} \) be the 3-periodic link in \(S^3 \) with rational quotient \(L = \overline{C}[n_1, n_2, \ldots, n_r] \). Suppose that \(|n_1n_2n_3| \geq 2\) for each \(i = 1, 2, \ldots, r-3 \). Then the signature \(\sigma(L^{(3)}) \) of \(L^{(3)} \) is given by
\[
\sigma(L^{(3)}) = -2 \sum_{i=1}^{r} \frac{n_i}{|n_i|} = 2\sigma(L^{(2)}).
\]

Proof. We will claim that the sign of \(d_i \) is opposite of the sign of \(n_i \) and the absolute value of \(d_i \) is greater than or equal to \(\frac{1}{4} \) for all \(i = 1, 2, \ldots, r \). Since \(n_1 \) and \(n_2 \) are nonzero integers and \(d_1 = -\frac{3n_1}{2} + \frac{1}{2n_2} \), the sign of \(d_1 \) is opposite of the sign of \(n_1 \) and
\[
|d_1| \geq \frac{3}{2} - \frac{1}{2} = 1 \geq \frac{1}{4}.
\]

Since \(n_1, n_2 \) and \(n_3 \) are nonzero integers and \(d_2 = \frac{1}{2n_1} - \frac{3n_2}{2} + \frac{1}{2n_3} \), the sign of \(d_2 \) is opposite of the sign of \(n_2 \) and
\[
|d_2| \geq \frac{3}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2} \geq \frac{1}{4}.
\]

Suppose that the sign of \(d_i \) is opposite of the sign of \(n_i \) and \(|d_i| \geq \frac{1}{4}\) for all \(i = 1, 2, \ldots, k \). Now we claim that the sign of \(d_{k+1} \) is opposite of the sign of \(n_{k+1} \) and \(|d_{k+1}| \geq \frac{1}{4}\). We recall that, for \(2 \leq k \leq r-2 \),
\[
d_{k+1} = \frac{1}{2n_k} - \frac{3n_{k+1}}{2} + \frac{1}{2n_{k+2}} - \frac{1}{4n_k^2d_{k-1}}.
\]

If \(|n_{k+1}| \geq 2\), then \(|\frac{3n_{k+1}}{2}| \geq 3\). Since \(|d_{k-1}| \geq \frac{1}{4}, \ |\frac{1}{2n_k} + \frac{1}{2n_{k+2}} - \frac{1}{4n_k^2d_{k-1}}| \leq \frac{1}{2} + \frac{1}{2} + 1 = 2\). Hence the sign of \(d_{k+1} \) is opposite of the sign of \(n_{k+1} \) and
\[
|d_{k+1}| \geq 3 - 2 = 1 \geq \frac{1}{4}.
\]
If \(|n_{k+1}| = 1\) and \(|n_k| \geq 2\), then \(|\frac{3n_{k+1}}{2} - \frac{1}{2n_k} + \frac{1}{2n_{k+2}} - \frac{1}{4n_k^2d_{k-1}}| \leq \frac{1}{4} + \frac{1}{2} + \frac{1}{4} = 1\). Hence the sign of \(d_{k+1}\) is opposite of the sign of \(n_{k+1}\) and
\[|d_{k+1}| \geq \frac{3}{2} - 1 = \frac{1}{2} \geq \frac{1}{4}.\]

If \(|n_{k+1}| = 1\), \(|n_k| = 1\) and \(|n_{k-1}| \geq 2\), then \(|d_{k-1}| \geq 1\). Since \(|\frac{3n_{k+1}}{2} - \frac{1}{2n_k} + \frac{1}{2n_{k+2}} - \frac{1}{4n_k^2d_{k-1}}| \leq \frac{1}{4} + \frac{1}{2} + \frac{1}{4} = \frac{3}{4}\), the sign of \(d_{k+1}\) is opposite of the sign of \(n_{k+1}\) and
\[|d_{k+1}| \geq \frac{3}{2} - \frac{5}{4} = \frac{1}{4}.\]

If \(|n_{k+1}| = 1\), \(|n_k| = 1\) and \(|n_{k-1}| = 1\), then \(|n_{k-2}| \geq 2\) and \(|n_{k+2}| \geq 2\). If \(4 \leq k \leq r-2\), then \(|d_{k-1}| \geq \frac{3n_{k+1}}{2} - \frac{1}{2n_k} + \frac{1}{2n_{k+2}} - \frac{1}{4n_k^2d_{k-1}}| \geq \frac{1}{2} - (\frac{1}{4} + \frac{1}{2} + \frac{1}{4}) = \frac{1}{2}\) and hence \(\frac{1}{2n_k} + \frac{1}{2n_{k+2}} - \frac{1}{4n_k^2d_{k-1}}| \leq \frac{1}{2} + \frac{1}{2} + \frac{1}{4} = \frac{5}{4}\). If \(k = 3\), then \(|d_{k-1}| = |d_2| \geq \frac{1}{2}\) and hence \(\frac{1}{2n_k} + \frac{1}{2n_{k+2}} - \frac{1}{4n_k^2d_{k-1}}| \leq \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = \frac{5}{4}\). If \(k = 2\), then \(|d_{k-1}| = |d_1| \geq 1\) and hence \(\frac{1}{2n_k} + \frac{1}{2n_{k+2}} - \frac{1}{4n_k^2d_{k-1}}| \leq \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1\). Since \(|\frac{3n_{k+1}}{2} - \frac{1}{2n_k} + \frac{1}{2n_{k+2}} - \frac{1}{4n_k^2d_{k-1}}| = \frac{1}{2}\), the sign of \(d_{k+1}\) is opposite of the sign of \(n_{k+1}\) and
\[|d_{k+1}| \geq \frac{3}{2} - \frac{5}{4} = \frac{1}{4}.\]

If \(k+1 = r\), then we can also see that the sign of \(d_r\) is opposite of the sign of \(n_r\) and \(|d_r| \geq \frac{1}{4}\) by the similar argument.

Therefore \(d_r\) is nonzero and the sign of \(d_i\) is opposite of the sign of \(n_i\) for all \(i = 1, 2, \ldots, r\). From Corollary 4.2, the signature \(\sigma(L^{(3)})\) of \(L^{(3)}\) is given by
\[\sigma(L^{(3)}) = -2 \sum_{i=1}^{r} \frac{n_i}{|n_i|}.\]

From (4.3), \(\sigma(L^{(3)}) = 2(-\sum_{i=1}^{r} \frac{n_i}{|n_i|}) = 2\sigma(L^{(2)})\). This completes the proof. \(\square\)

Corollary 4.4. Let \(n_1, n_2, \ldots, n_r\) be given nonzero integers \((r \geq 1)\) and let \(L^{(3)}\) be the 3-periodic link in \(S^3\) with rational quotient \(L = \overrightarrow{C}[n_1, n_2, \ldots, n_r]\). Suppose that \(d_i \neq 0\) for all \(i = 1, 2, \ldots, r\). Then
\[\det(L^{(3)}) = |\Delta_{L^{(3)}}(-1)| = 2^r |n_1n_2 \cdots n_r| d_1d_2 \cdots d_r|.\]

Proof. The result follows from Theorem 4.1 at once. \(\square\)

Example 4.5. The symmetric matrix \(S\) of the 3-periodic link \(L^{(3)}\) with rational quotient \(L = \overrightarrow{C}[2, 1, -2]\) is given by
Sang Youl Lee, Maeng-Sang Park and Myoungsoo Seo

\[
S = \begin{bmatrix}
-4 & 1 & 0 & 2 & 0 & 0 \\
1 & -2 & 1 & -1 & 1 & 0 \\
0 & 1 & 4 & 0 & -1 & -2 \\
2 & -1 & 0 & -4 & 1 & 0 \\
0 & 1 & -1 & 1 & -2 & 1 \\
0 & 0 & -2 & 0 & 1 & 4
\end{bmatrix}.
\]

We have that \(S = PDP^T \), where

\[
D = \text{diag}(-4, -2, 4, -\frac{3}{2}, -\frac{5}{2}, -\frac{3}{2}) \quad \text{and}
\]

\[
P = \begin{bmatrix}
\frac{1}{2} & -\frac{1}{2} & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{2} & \frac{1}{2} & 0 & 1 & 0 \\
-\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 0 & 0
\end{bmatrix}.
\]

This implies that \(\sigma(L(3)) = -2 = -2\sum_{i=1}^{3} \frac{n_i}{|n_i|} = 2\sigma(L(2)) \) (cf. Corollary 4.3) and \(\det(L(3)) = 432 \).

Remarks 4.6.

(1) In order to generalize Theorem 4.1 for the case \(p \geq 4 \), we need to diagonalize the symmetric matrix \(S = M + M^T \) in (4.2) of a \(p \)-periodic link with rational quotient \(\mathbb{C}[[n_1, n_2, \ldots, n_r]] \) so that the diagonal entries are completely expressed as the integer \(n_1, n_2, \ldots, n_r \). The authors have no such a diagonalization of \(S \) and so we leave this an open question.

It should be noted that if \(|n_in_{i+1}n_{i+2}n_{i+3}| = 1 \) for some \(i = 1, 2, \ldots, r-3 \), Corollary 4.3 may not hold. For example, if \(n_1 = n_2 = n_3 = n_4 = n_6 = n_8 = n_9 = 1 \) and \(n_5 = 2 \), then \(d_9 = 0 \).

(2) The signatures of more general periodic knots and links in \(S^3 \) have been studied by several authors, for example, see [2], [3], [4], [8], [9], [12].

(3) It is well known that the Alexander polynomial is given by the formula \(\Delta_K(t) = \det(M - tM^T) \). In [10], with Fox’s free differential calculus, Lee and Seo gave a recurrence formula for calculating the Alexander polynomials of 2-bridge links by using a special type of Conway diagram as shown in Figure 3 and the reduced Alexander polynomials of \(p \)-periodic links with rational quotient \(\mathbb{C}[[n_1, n_2, \ldots, n_r]] \) in terms of \(n_1, n_2, \ldots, n_r \) and \(p \).
References

