On the Ideal Extensions in Γ-Semigroups

Manoj Siripitukdet and Aiyared Iampan
Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

Abstract. In 1981, Sen [4] have introduced the concept of Γ-semigroups. We have known that Γ-semigroups are a generalization of semigroups. In this paper, we introduce the concepts of the extensions of s-prime ideals, prime ideals, s-semiprime ideals and semiprime ideals in Γ-semigroups and characterize the relationship between the extensions of ideals and some congruences in Γ-semigroups.

1. Preliminaries

Let M and Γ be any two nonempty sets. M is called a Γ-semigroup [5], [7] if for all $a, b, c \in M$ and $\gamma, \mu \in \Gamma$, we have (i) $a\gamma b \in M$ and (ii) $(a\gamma b)\mu c = a\gamma (b\mu c)$. A Γ-semigroup M is called a commutative Γ-semigroup if $a\gamma b = b\gamma a$ for all $a, b \in M$ and $\gamma \in \Gamma$. A nonempty subset K of a Γ-semigroup M is called a sub-Γ-semigroup of M if $a\gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$.

For examples of Γ-semigroups, see [1], [3], [5], [6], [7].

Let S be a semigroup and $\Gamma = \{1\}$. We define a mapping $S \times \Gamma \times S \rightarrow S$ by $a_1 b = ab$ for all $a, b \in S$. Then S is a Γ-semigroup. Hence we have known that Γ-semigroups are a generalization of semigroups.

For nonempty subsets A and B of a Γ-semigroup M and a nonempty subset Γ' of Γ, let $A\Gamma' B := \{a\gamma b : a \in A, b \in B \text{ and } \gamma \in \Gamma'\}$. If $A = \{a\}$, then we also write $\{a\}\Gamma' B$ as $a\Gamma' B$, and similarly if $B = \{b\}$ or $\Gamma' = \{\gamma\}$. A nonempty subset I of a Γ-semigroup M is called an ideal of M if $MTI \subseteq I$ and $I\Gamma M \subseteq I$. The intersection of all ideals of a Γ-semigroup M containing a nonempty subset A of M is the ideal of M generated by A, and will be denoted by $I(A)$. If $A = \{x\}$, then we also write $I(\{x\})$ as $I(x)$. An ideal I of a Γ-semigroup M is called an s-prime ideal [3] of M if for any $a, b \in M$ and $\gamma \in \Gamma$, $a\gamma b \in I$ implies $a \in I$ or $b \in I$. Equivalently, for any $A, B \subseteq M$ and $\gamma \in \Gamma$, $A\gamma B \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$. An ideal I of a Γ-semigroup M is called a prime ideal of M if for any $a, b \in M$, $a\Gamma b \subseteq I$ implies $a \in I$ or $b \in I$. Equivalently, for any $A, B \subseteq M$, $A\Gamma B \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$.

Received June 30, 2006, and, in revised form, January 15, 2008.

2000 Mathematics Subject Classification: 20M99, 06B10.

Key words and phrases: Γ-semigroup, extension of s-prime ideal, prime ideal, s-semiprime ideal and semiprime ideal.

585
An ideal I of a Γ-semigroup M is called a s-semiprime ideal of M if for any $a \in M$ and $\gamma \in \Gamma$, $a \gamma a \in I$ implies $a \in I$. Equivalently, for any $A \subseteq M$ and $\gamma \in \Gamma$, $A \gamma A \subseteq I$ implies $A \subseteq I$. An ideal I of a Γ-semigroup M is called a semiprime ideal of M if for any $a \in M$, $a \Gamma a \subseteq I$ implies $a \in I$. Equivalently, for any $A \subseteq M$, $A \Gamma A \subseteq I$ implies $A \subseteq I$. Hence we have the following statements for Γ-semigroups.

1. Every s-prime ideal is a prime ideal.
2. Every prime ideal is a semiprime ideal.
3. Every s-prime ideal is an s-semiprime ideal.
4. Every s-semiprime ideal is a semiprime ideal.

For a Γ-semigroup M, let

$$
P(M) := \{A: A \text{ is a prime ideal of } M\},
$$

$$
SP(M) := \{A: A \text{ is an } s\text{-prime ideal of } M\}.
$$

Then $\emptyset \neq SP(M) \subseteq P(M)$. A sub-$\Gamma$-semigroup F of a Γ-semigroup M is called a filter [3] of M if for any $a, b \in M$ and $\gamma \in \Gamma, a \gamma b \in F$ implies $a, b \in F$. The intersection of all filters of a Γ-semigroup M containing a nonempty subset A of M is the filter of M generated by A. For $A = \{x\}$, let $\mathcal{I}(x)$ denote the filter of M generated by $\{x\}$. An equivalence relation σ on a Γ-semigroup M is called a congruence [2], [6] if for any $a, b, c \in M$ and $\gamma \in \Gamma, (a, b) \in \sigma$ implies $(a \gamma c, b \gamma c) \in \sigma$ and $(c \gamma a, c \gamma b) \in \sigma$. Let σ be a congruence on a Γ-semigroup M and $M/\sigma := \{(x)_\sigma : x \in M\}$. We define $(x)_\sigma (y)_\sigma = (x \gamma y)_\sigma$ for all $(x)_\sigma, (y)_\sigma \in M/\sigma$ and $\gamma \in \Gamma$. It is easy to verify that the definition is well-defined and M/σ is a Γ-semigroup. A congruence σ on a Γ-semigroup M is called a semilattice congruence [8] if for all $a, b, c \in M$ and $\gamma \in \Gamma, (a \gamma b, b \gamma a) \in \sigma$ and $(a \gamma a, a) \in \sigma$. For an ideal I of a Γ-semigroup M and $A \subseteq M$, the set $< A, I > := \{x \in M : A \Gamma x \subseteq I\}$ is called the extension of I by A. If $A = \{a\}$, then we also write $< \{a\}, I >$ as $< a, I >$. For an ideal I of a Γ-semigroup M, we define equivalence relations on M as follows:

$$
\sigma_I := \{(x, y) \in M \times M : x, y \in I \text{ or } x, y \notin I\},
$$

$$
\phi_I := \{(x, y) \in M \times M : < x, I > = < y, I >\},
$$

$$
n := \{(x, y) \in M \times M : n(x) = n(y)\}.
$$

Example 1.[[3]] Let $M = \{a, b, c, d\}$ and $\Gamma = \{\gamma\}$ with the multiplication defined by

$$
x \gamma y = \begin{cases} b & \text{if } x, y \in \{a, b\}, \\ c & \text{otherwise}. \end{cases}
$$

Then M is a Γ-semigroup. We can easily get all ideals of M as follows:

$$
P_1 = M, P_2 = \{c, d\}, P_3 = \{b, c\}, P_4 = \{c\}, P_5 = \{a, b, c\}, P_6 = \{b, c, d\}.
$$

It is easy to see that P_1 and P_2 are s-prime ideals of M, so P_1 and P_2 are semiprime ideals of M. Let

$$
\sigma_1 = M \times M,
$$

$$
\sigma_2 = \{(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (c, d), (d, c)\}.
$$
It is easy to see that σ_1 and σ_2 are semilattice congruences on M.

Example 2. For $n \in \{1, 2\}$, let $M = \{n, n + 1, n + 2, \cdots\}$ and $\Gamma = \{-n\}$. Then M is a Γ-semigroup under usual addition. Let $I = \{2n, 2n + 1, 2n + 2, \cdots\}$. It is easy to verify that I is a semiprime ideal of M and $\sigma = \{(n, n)\}$ is a semilattice congruence on M.

The following theorem is obtained similarly in [3] and the following lemmas will be used frequently in this paper.

Theorem 1.1. If M is a Γ-semigroup, then

$$n = \bigcap_{I \in SP(M)} \sigma_I.$$

In this paper, we consider the ideal extensions in a commutative Γ-semigroup. From now on, M stands for a commutative Γ-semigroup. The next two lemmas are easy to verify.

Lemma 1.2. If A is a subset of M, then $I(A) = A \cup MA$.

Lemma 1.3. Let I be an ideal of M and $A \subseteq B \subseteq M$. Then $< B, I > \subseteq < A, I >$.

Lemma 1.4. Let I be an ideal of M, $A \subseteq M$ and $\gamma \in \Gamma$. Then we have the following statements:

(a) $< A, I >$ is an ideal of M.

(b) $I \subseteq< A, I > \subseteq< A\Gamma A, I > \subseteq< A\gamma A, I >$.

(c) If $A \subseteq I$, then $< A, I > = M$.

Proof.

(a) Let $x \in< A, I >, y \in M$ and $\gamma \in \Gamma$. Then $A\gamma y = (A\Gamma y) \subseteq I \Gamma M \subseteq I$, so $x\gamma y \in< A, I >$. Hence $< A, I >$ is an ideal of M.

(b) If $x \in I$, then $A\Gamma x \subseteq M\Gamma I \subseteq I$. Thus $x \in< A, I >$. If $x \in< A, I >$, then $(A\Gamma A)\Gamma x = A\Gamma (A\Gamma x) \subseteq M\Gamma I \subseteq I$. Thus $x \in< A\Gamma A, I >$. If $x \in< A\Gamma A, I >$, then $(A\gamma A)\Gamma x \subseteq (A\Gamma A)\Gamma x \subseteq I$. Thus $x \in< A\Gamma A, I >$. Hence $I \subseteq< A, I > \subseteq< A\Gamma A, I > \subseteq< A\gamma A, I >$.

(c) Let $A \subseteq I$ and $x \in M$. Then $A\Gamma x \subseteq I\Gamma M \subseteq I$, so $x \in< A, I >$. Hence $< A, I > = M$. \qed

Lemma 1.5. Let I be an ideal of M and $A \subseteq M$. Then

$$< A, I > = \bigcap_{a \in A} < a, I > =< A \setminus I, I >.$$

Proof. By Lemma 1.3, we have $< A, I > \subseteq \bigcap_{a \in A} < a, I >$. Let $x \in \bigcap_{a \in A} < a, I >$. Then $a\Gamma x \subseteq I$ for all $a \in A$, so $A\Gamma x \subseteq I$. Thus $x \in< A, I >$, so $\bigcap_{a \in A} < a, I > \subseteq< A\setminus I, I >$. \qed
Manoj Siripitukdet and Aiyared Iampan

\[A, I >. \] Hence \(< A, I > = \bigcap_{a \in A} < a, I >. \] By Lemma 1.4 (c), we have \(< A, I > = \bigcap_{a \in A} < a, I > = < A \setminus I, I >. \]

\[A, I >. \] By Lemma 1.4 (c), we have \(< A, I > = \bigcap_{a \in A} < a, I > = < A \setminus I, I >. \]

\[< A, I > = < A \setminus I, I >. \]

\[\square \]

Lemma 1.6. Let \(I \) be an ideal of \(M \). Then \(I \) is a prime ideal of \(M \) if and only if \(< A, I > = I \) for all \(A \not\subseteq I \).

Proof. Assume that \(I \) is a prime ideal of \(M \) and \(A \not\subseteq I \). Let \(x \in < A, I >. \) Then \(A^\Gamma x \subseteq I. \) By hypothesis and \(A \not\subseteq I \), \(x \in I \). Thus \(< A, I > \subseteq I. \) By Lemma 1.4 (b), \(< A, I > = I \).

Conversely, assume that \(< A, I > = I \) for all \(A \not\subseteq I \). Let \(A, B \subseteq M \) be such that \(A^\Gamma B \subseteq I \) and \(A \not\subseteq I \). Then \(B \subseteq < A, I > = I. \) Hence \(I \) is a prime ideal of \(M \).

\[\square \]

We can easily prove the last lemma.

Lemma 1.7. Let \(A \) and \(B \) be two nonempty subfamilies of \(P(M) \) and \(SP(M) \), respectively. Then we have the following statements:

(a) \(\bigcap_{P \in A} P \) is a semiprime ideal of \(M \) if \(\bigcap_{P \in A} P \not= \emptyset \).

(b) \(\bigcup_{P \in B} P \) is a prime ideal of \(M \).

(c) \(\bigcap_{P \in B} P \) is an \(s \)-semiprime ideal of \(M \) if \(\bigcap_{P \in B} P \not= \emptyset \).

(d) \(\bigcup_{P \in B} P \) is an \(s \)-prime ideal of \(M \).

2. **Main theorems**

In this section, we give some characterizations of the relationship between the extensions of ideals and some congruences in \(\Gamma \)-semigroups.

Theorem 2.1. Let \(P \) be a prime ideal of \(M \) and \(A \subseteq M \). Then \(< A, P > \) is a prime ideal of \(M \). Furthermore, \(< A, \bigcap_{P \in P(M)} P > \) is a semiprime ideal of \(M \) if \(\bigcap_{P \in P(M)} P \not= \emptyset \).

Proof. If \(A \subseteq P \), then it follows from Lemma 1.4 (c) that \(< A, P > = M \). If \(A \not\subseteq P \), then it follows from Lemma 1.6 that \(< A, P > = P \). Hence \(< A, P > \) is a prime
ideal of M. Now,

\[x \in< A, \bigcap_{P \in P(M)} P > \quad \Leftrightarrow \quad A \Gamma x \subseteq \bigcap_{P \in P(M)} P \]
\[\quad \Leftrightarrow \quad A \Gamma x \subseteq P \text{ for all } P \in P(M) \]
\[\quad \Leftrightarrow \quad x \in< A, P > \text{ for all } P \in P(M) \]
\[\quad \Leftrightarrow \quad x \in \bigcap_{P \in P(M)} < A, P > . \]

Hence

\[< A, \bigcap_{P \in P(M)} P > = \bigcap_{P \in P(M)} < A, P > . \]

It follows from Lemma 1.7 (a) that $< A, \bigcap_{P \in P(M)} P >$ is a semiprime ideal of M. □

Theorem 2.2. Let $A, B \subseteq M$ and $A \subseteq M \Gamma A$. Then $I(A) \subseteq I(B)$ if and only if for every ideal J of M, $< B, J > \subseteq< A, J >$.

Proof. Assume that $I(A) \subseteq I(B)$. Let J be an ideal of M and $x \in< B, J >$. By Lemma 1.2, we have $A \subseteq I(B) = B \cup M \Gamma B$. For any $a \in A$, if $a = yab$ for some $y \in M, b \in B$ and $\alpha \in \Gamma$, then $a \gamma x = (yab) \gamma x = y\alpha(b \gamma x) \in M \Gamma J \subseteq J$ for all $\gamma \in \Gamma$. Hence $a \gamma x \in J$ for all $\gamma \in \Gamma$, so $x \in< a, J >$. If $a = b$ for some $b \in B$, then $a \gamma x = b \gamma x \in J$ for all $\gamma \in \Gamma$. Hence $a \gamma x \in J$ for all $\gamma \in \Gamma$, so $x \in< a, J >$. Therefore

\[< B, J > \subseteq \bigcap_{a \in A} < a, J > . \]

It follows from Lemma 1.5 that $< B, J > \subseteq< A, J >$.

Conversely, assume that $< B, J > \subseteq< A, J >$ for all ideal J of M. Then $< B, I(B) > \subseteq< A, I(B) >$. Since $B \subseteq I(B)$, it follows from Lemma 1.4 (c) that $< B, I(B) > = M$. Thus $< A, I(B) > = M$, so $M \Gamma A \subseteq I(B)$. Hence $A \subseteq M \Gamma A \subseteq I(B)$. This implies that $I(A) \subseteq I(B)$. □

Theorem 2.3. If I is an s-semiprime ideal of M, then ϕ_I is a semilattice congruence on M.

Proof. Let $(x, y) \in \phi_I, c \in M$ and $\gamma \in \Gamma$. Then $< x, I > =< y, I >$. Thus

\[a \in< x \gamma c, I > \quad \Leftrightarrow \quad (x \gamma c) \Gamma a \subseteq I \]
\[\quad \Leftrightarrow \quad x \Gamma (c \gamma a) \subseteq I \]
\[\quad \Leftrightarrow \quad c \gamma a \in< x, I > \]
\[\quad \Leftrightarrow \quad c \gamma a \in< y, I > \]
\[\quad \Leftrightarrow \quad y \Gamma (c \gamma a) \subseteq I \]
\[\quad \Leftrightarrow \quad (y \gamma c) \Gamma a \subseteq I \]
\[\quad \Leftrightarrow \quad a \in< y \gamma c, I > . \]
Hence \((x\gamma c, y\gamma c) \in \phi_I\). Similarly, we can show that \((c\gamma x, c\gamma y) \in \phi_I\). Hence \(\phi_I\) is a congruence on \(M\). Let \(x \in M\) and \(\gamma \in \Gamma\). Then
\[
\begin{align*}
 a \in < x\gamma x, I > & \Rightarrow (x\gamma x)\Gamma a \subseteq I \\
 & \Rightarrow (x\gamma x)\Gamma a \subseteq I \Gamma M \subseteq I \\
 & \Rightarrow (x\Gamma a)\gamma (x\Gamma a) \subseteq I \\
 & \Rightarrow x\Gamma a \subseteq I \\
 & \Rightarrow a \in < x, I > .
\end{align*}
\]
Thus \(< x\gamma x, I > \subseteq < x, I >\). By Lemma 1.4 \((b)\), \(< x, I >\subseteq < x\gamma x, I >\). Hence \(< x\gamma x, I > = < x, I >\), so \((x\gamma x, x) \in \phi_I\). Therefore \(\phi_I\) is a semilattice congruence on \(M\). \(\square\)

Theorem 2.4. If \(I\) is an \(s\)-prime ideal of \(M\), then \(\phi_I = \sigma_I\) and \(n \subseteq \phi_I\).

Proof. Let \((x, y) \in \phi_I\). Then \(< x, I > = < y, I >\). Suppose that \((x, y) \notin \sigma_I\). Without loss of generality, we may assume that \(x \in I\) but \(y \notin I\). By Lemma 1.4 \((c)\) and Lemma 1.6, we have \(< x, I > = M\) and \(< y, I > = I\). Thus \(I = M\), so \(y \notin M\). This is a contradiction. Hence \((x, y) \in \sigma_I\), so \(\phi_I \subseteq \sigma_I\). Let \((x, y) \in \sigma_I\). If \(x \in I\), then \(y \in I\). By Lemma 1.4 \((c)\), \(< x, I > = M = < y, I >\). If \(x \notin I\), then \(y \notin I\). By Lemma 1.6, \(< x, I > = \phi_I = < y, I >\). Hence \((x, y) \in \phi_I\), so \(\sigma_I \subseteq \phi_I\). Therefore \(\phi_I = \sigma_I\). It follows from Theorem 1.1 that
\[
n = \bigcap_{J \in SP(M)} \sigma_J = \bigcap_{J \in SP(M)} \phi_J \subseteq \phi_I .
\]
Hence the proof is completed. \(\square\)

Acknowledgment. The authors would like to thank the referees for the useful and helpful suggestions.

References

