Ideals of the Multiplicative Semigroups \mathbb{Z}_n and their Products

WATTAPONG PUNINAGOOL
Department of Mathematics, Udon Thani Rajabhat University, Udon Thani, 41000, Thailand
e-mail: wattapong1p@yahoo.com

JINTANA SANWONG*
Department of Mathematics, Chiang Mai University, Chiang Mai, 50200, Thailand
e-mail: scmti004@chiangmai.ac.th

Abstract. The multiplicative semigroups \mathbb{Z}_n have been widely studied. But, the ideals of \mathbb{Z}_n seem to be unknown. In this paper, we provide a complete descriptions of ideals of the semigroups \mathbb{Z}_n and their product semigroups $\mathbb{Z}_m \times \mathbb{Z}_n$. We also study the numbers of ideals in such semigroups.

1. Introduction

Many authors have studied the multiplicative semigroups \mathbb{Z}_n in various aspects. For examples, Vandiver and Weaver [9] studied the cyclic subsemigroups generated by nonunit elements in \mathbb{Z}_n. In [2], Hewitt and Zuckerman followed [3] to study the semicharacters of \mathbb{Z}_n. Later, Ehrlich proved that $(\mathbb{Z}_n, +, \cdot)$ is regular if and only if n is square-free. In 1980, Livingstons solved the problem: compute H and D for the semigroup \mathbb{Z}_n where $H = \max \{h_a | a \in \mathbb{Z}_n\}$, $D = \text{lcm} \{d_a | a \in \mathbb{Z}_n\}$ and h_a, d_a are the least positive integers such that $a^{h_a} = a^{h_a} + d_a$. Recently, Kemprasit and Buapradist showed that: in the multiplicative semigroups \mathbb{Z}_n, the set of bi-ideals and the set of quasi-ideals coincide if and only if either $n = 4$ or n is square-free.

In this papers, we determine all the ideals of these semigroups and their products. The study also show that they are a lot more ideals of \mathbb{Z}_n and $\mathbb{Z}_m \times \mathbb{Z}_n$ as semigroups than those of \mathbb{Z}_n and $\mathbb{Z}_m \times \mathbb{Z}_n$ as rings. As usual, if a and b are integers not both zero, then (a, b) denotes the greatest common divisor of a and b in \mathbb{Z}, and $a \mid b$ means a divides b in \mathbb{Z}. For each positive integer n, we write $\mathbb{Z}_n = \{0, 1, 2, \cdots, n-1\}$ and regard this, in the usual way, as a semigroup under multiplication modulo n. That is, for each $a, b \in \mathbb{Z}_n$, we write $a \cdot b$ (or simply ab) for the remainder $r \in \mathbb{Z}_n$ when the usual product of a and b in \mathbb{Z} is divided by n. It will be clear from the context whether $a \cdot b$ means this product in \mathbb{Z}_n or the usual
product in \(\mathbb{Z}\).

2. Ideals of \(\mathbb{Z}_n\)

We begin by describing the elements of each principal ideal in \(\mathbb{Z}_n\).

Lemma 1. If \(a \in \mathbb{Z}_n\) and \(d = n/(a,n)\) then \(a\mathbb{Z}_n = \{0, a, 2a, \cdots, (d-1)a\}\) and \(|a\mathbb{Z}_n| = d\).

Proof. If \(a = 0\) then \((0,n) = n\), so \(d = 1\) and \(a\mathbb{Z}_n = \{0\}\) as required. Suppose \(a \neq 0\) and \(x \in \mathbb{Z}_n\). By the Division Algorithm for \(\mathbb{Z}\), we know \(x = qd + r\) for some \(q, r \in \mathbb{Z}\) with \(0 \leq r \leq d - 1\). Therefore, since \(a/(a, n)\) is an integer, we have:

\[
xa = qda + ra = qa \cdot \frac{a}{(a, n)} + ra \equiv ra \mod n.
\]

That is, \(xa = ra\) in \(\mathbb{Z}_n\), and it follows that \(a\mathbb{Z}_n = \{0, a, 2a, \cdots, (d-1)a\}\). Moreover, if \(xa = yd\) for some \(x, y\) such that \(0 \leq x < y \leq d - 1\) then \((x - y)a = kn\) for some \(k \in \mathbb{Z}\). Hence

\[
(x - y) \cdot \frac{a}{(a, n)} = kd,
\]

where \(a/(a, n)\) and \(d\) are coprime, and \(0 < x - y < d\). Since this is impossible, we deduce that the elements of \(\{0, a, 2a, \cdots, (d-1)a\}\) are distinct and hence \(|a\mathbb{Z}_n| = d\). \(\square\)

The next result provides more information about the principal ideals of \(\mathbb{Z}_n\).

Lemma 2. For each non-zero \(a \in \mathbb{Z}_n\), \(a\mathbb{Z}_n = (a,n)\mathbb{Z}_n\).

Proof. Since \(a = (a,n)k\) for some \(k \in \mathbb{Z}^+\) and \((a,n) \in \mathbb{Z}_n\), we have \(a\mathbb{Z}_n \subseteq (a, n)\mathbb{Z}_n\). Conversely, by the Euclidean Algorithm, \((a,n) = ra + sn\) for some \(r, s \in \mathbb{Z}\), hence \((a, n) \equiv ra \mod n\). That is, \((a,n) = a.l\) for some \(l \in \mathbb{Z}_n\) and so \((a,n)\mathbb{Z}_n \subseteq a\mathbb{Z}_n\). \(\square\)

Theorem 1. Every ideal of \(\mathbb{Z}_n\) is principal if and only if \(n = p^k\) for some prime \(p\) and some integer \(k \geq 0\). Moreover, in this event, the ideals of \(\mathbb{Z}_n\) are precisely the set \(p^i\mathbb{Z}_n\) where \(0 \leq i \leq k\), and hence they form a chain under \(\subseteq\).

Proof. Suppose that every ideal of \(\mathbb{Z}_n\) is principal, and assume that there are distinct prime divisors \(p, q\) of \(n\). Then \(p\mathbb{Z}_n \cap q\mathbb{Z}_n = x\mathbb{Z}_n\) for some \(x \in \mathbb{Z}_n\) and, without loss of generality, we assume that \(x \in p\mathbb{Z}_n\). This implies \(x\mathbb{Z}_n \subseteq p\mathbb{Z}_n\), hence \(q\mathbb{Z}_n \subseteq p\mathbb{Z}_n\) and so \(q = pa\) for some \(a \in \mathbb{Z}_n\). In other words, \(q = pa + kn\) for some \(k \in \mathbb{Z}\), and hence \(p/q\), a contradiction. Therefore, \(n = p^k\) for some integer \(k \geq 0\), as required.

Conversely, suppose that \(n = p^k\) for some integer \(k \geq 0\), and let \(I\) be an ideal of \(\mathbb{Z}_n\). Since \(\{0\} = 0\mathbb{Z}_n\) and \(n\mathbb{Z}_n = I\mathbb{Z}_n\), we can assume that \(I\) is non-trivial. Let \(a \in I \setminus \{0\}\). If \(p \nmid a\) then \((a, p^k) = 1\), hence \(a \in U_n\), the group of units in \(\mathbb{Z}_n\), and so \(1 = a^{-1}a \in I\), contradicting our assumption. That is, each non-zero element of \(I\) is divisible by some (positive) power of \(p\). Let \(t\) be the least positive \(s\) such that \(p^s|a\) for some non-zero \(a \in I\). Then \(I\) contains a non-zero element \(a = p^tx\) where \(p \nmid x\) (otherwise we contradict the choice of \(t\)). In fact, since \(0 < a < n\), we have \(0 < x < n\)
and so \(x \in U_n \). Consequently, \(p^i = p^i xx^{-1} \in I \) and so \(p^i \mathbb{Z}_n \subseteq I \). Moreover, if \(b \in I \) and \(b = p^i y \) then \(r \geq t \) (by the choice of \(t \)) and \(b = p^i p^{r-t} y \in p^i \mathbb{Z}_n \), so \(I \subseteq p^i \mathbb{Z}_n \) and equality follows. \(\square \)

We have already known that \(\mathbb{Z}_n \) as a ring is a principal ideal ring [5] p 133, Exercise 10(c). But, as a semigroup, \(\mathbb{Z}_n \) is not principal (i.e., some ideals are not principal) if \(n \neq p^k \) for some prime number \(p \) and \(k \geq 1 \) (see Theorem 2 for detail).

Recall that, if \(I \) is an ideal of a commutative semigroup \(S \) with identity, then \(I = \cup \{ aS : a \in I \} \); and conversely, the union of any family of principal ideals of \(S \) is an ideal of \(S \). In fact, \(aS \subseteq bS \) if and only if \(b \mid a \). From this observation, we deduce the following result.

Theorem 2. If \(I \) is a non-zero ideal of \(\mathbb{Z}_n \), then \(I = \cup \{ m_i \mathbb{Z}_n : i = 1, \ldots, k \} \), where \(m_1, \ldots, m_k \) are divisors of \(n \) such that \(m_i \nmid m_j \) if \(i \neq j \).

Proof. By the above remarks, there exists \(m_1, \ldots, m_k \) such that \(I = \cup \{ m_i \mathbb{Z}_n : i = 1, \ldots, k \} \). Clearly, we can assume \(m_i \nmid m_j \) if \(i \neq j \): otherwise, if \(m_i \mid m_j \), then \(m_j \mathbb{Z}_n \subseteq m_i \mathbb{Z}_n \) and so \(m_j \mathbb{Z}_n \) can be omitted from the union. Also, by Lemma 2, \(m_i \mathbb{Z}_n = (m_i, n)\mathbb{Z}_n \) for each \(i = 1, \ldots, k \), so we can assume that each \(m_i \) is a divisor of \(n \). \(\square \)

As an application of Theorem 2, we get a characterization of ideals in the ring \(\mathbb{Z}_n \).

Corollary 1. As a ring, the ideals of \(\mathbb{Z}_n \) are precisely the sets

\[
I = m\mathbb{Z}_n,
\]

where \(m \) is a divisor of \(n \).

Proof. Let \(I \) be an ideal of \(\mathbb{Z}_n \). If \(I = \{0\} \), then \(I = n\mathbb{Z}_n \). But, if \(I \) is non-zero, then since \(\mathbb{Z}_n \) is a principal ideal ring it follows from Theorem 2 that \(I = m\mathbb{Z}_n \), where \(m \) is a divisor of \(n \). \(\square \)

Here, if we denote the number of the divisors of \(n = p_1^{r_1} \cdots p_k^{r_k} \) where \(p_i \) are distinct primes and \(r_i > 0 \) for all \(i \) by \(d(n) \) then we see that the number of ideals of \(\mathbb{Z}_n \) (as ring) is

\[
d(n) = (r_1 + 1) \cdots (r_k + 1)
\]

(see [8] p167, Theorem 2 for detail). But, for the semigroup \(\mathbb{Z}_n \) the number of its ideals is different except when \(n = p^k \) for some prime \(p \) and \(k > 0 \).

Theorem 3. The number of non-zero ideals in \(\mathbb{Z}_n \) equals the number of sets \(\{z_1, \ldots, z_k\} \) where \(k \geq 1 \), \(z_i \mid n \) for each \(i = 1, \ldots, k \) and, \(z_i \nmid z_j \) if \(i \neq j \).

Proof. It suffices to show that, if \(I \) is a non-zero ideals of \(\mathbb{Z}_n \) and \(I = \cup \{x_i\mathbb{Z}_n : i = 1, \ldots, r\} = \cup \{y_j\mathbb{Z}_n : j = 1, \ldots, s\} \) where \(\{x_1, \ldots, x_r\} \) and \(\{y_1, \ldots, y_s\} \) satisfy the stated condition, then \(r = s \) and \(\{x_1, \ldots, x_r\} = \{y_1, \ldots, y_s\} \). To see this, first note that \(x_1 \in y_j\mathbb{Z}_n \) for some \(j \in \{1, \ldots, s\} \) and \(y_j \in x_k\mathbb{Z}_n \) for some \(k \in \{1, \ldots, r\} \), hence \(x_1 = y_j u \) and \(y_j = x_k v \) for some \(u, v \in \mathbb{Z}_n \), so \(x_1 = x_k v u \). Since \(x_k \mid n \), this implies \(x_k \mid x_1 \), a contradiction unless \(k = 1 \). That is, \(x_1 \mathbb{Z}_n \subseteq y_j \mathbb{Z}_n \subseteq x_k \mathbb{Z}_n \), and thus
where \(x_i \mathbb{Z}_n = y_j \mathbb{Z}_n \). Consequently, \(x_1 = y_j u \) and \(y_j = x_1 v \), and since \(y_j | n \) and \(x_1 | n \), we deduce that \(y_j | x_i \) and \(x_i | y_j \) in \(\mathbb{Z}_n \), so \(x_1 = y_j \). Similarly, \(\{ x_2, \ldots, x_r \} \subseteq \{ y_1, \ldots, y_s \} \) and hence \(r \leq s \). Using the same argument, but starting with \(y_1 \), we find that \(\{ y_1, \ldots, y_s \} \subseteq \{ x_1, \ldots, x_r \} \), hence \(s \leq r \) and so the two sets are equal. \(\square \)

3. Ideals of \(\mathbb{Z}_m \times \mathbb{Z}_n \)

The Chinese Remainder Theorem states that, if \(m, n \) are coprime, then \(\mathbb{Z}_{mn} \) is isomorphic to \(\mathbb{Z}_m \times \mathbb{Z}_n \) as rings, hence they are isomorphic as semigroups in this event (for a proof, see [5]). However, if \((m, n) \neq 1 \) then, as semigroups, \(\mathbb{Z}_{mn} \) may not be isomorphic to \(\mathbb{Z}_m \times \mathbb{Z}_n \). To illustrate this, we first remark that, if \(p \) is prime and \(k \geq 1 \), then the only idempotents in \(\mathbb{Z}_{pk} \) are 0 and 1.

Example 1. By the last remark, the only non-trivial idempotents in \(\mathbb{Z}_3 \times \mathbb{Z}_4 \) are \((1, 0)\) and \((0, 1)\), and we know \(\mathbb{Z}_{12} \cong \mathbb{Z}_3 \times \mathbb{Z}_4 \), so \(\mathbb{Z}_{12} \) contains exactly two non-trivial idempotents. Now, if \((a, b) \in \mathbb{Z}_2 \times \mathbb{Z}_6 \) is an idempotent then \(a = 0, 1 \) and \(b = 0, 1, 3, 4 \) so \(\mathbb{Z}_2 \times \mathbb{Z}_6 \) contains more than two non-trivial idempotents. Hence, \(\mathbb{Z}_{12} \ncong \mathbb{Z}_2 \times \mathbb{Z}_6 \) as semigroups.

More generally, Suppose \(p \neq q \) are primes. Then the Chinese Remainder Theorem implies \(\mathbb{Z}_{pq} \cong \mathbb{Z}_p \times \mathbb{Z}_q \), hence \(\mathbb{Z}_{pq} \) contains exactly two non-trivial idempotents. Likewise, \(\mathbb{Z}_{pq} \cong \mathbb{Z}_p \times \mathbb{Z}_q \), so \(\mathbb{Z}_{pq} \) contains exactly two non-trivial idempotents. Therefore, \(\mathbb{Z}_{pq} \ncong \mathbb{Z}_p \times \mathbb{Z}_q \), since \(\mathbb{Z}_p \times \mathbb{Z}_q \) contains at least four non-trivial idempotents.

In view of these remarks, we now determine all ideals of \(\mathbb{Z}_m \times \mathbb{Z}_n \). Like before, since \(\mathbb{Z}_m \times \mathbb{Z}_n \) contains an identity, every non-zero ideal \(I \) of \(\mathbb{Z}_m \times \mathbb{Z}_n \) can be written as

\[
I = \bigcup \left\{ (a_i, b_i) : \mathbb{Z}_m \times \mathbb{Z}_n : i = 1, \ldots, k \right\} = \bigcup \left\{ a_i \mathbb{Z}_m \times b_i \mathbb{Z}_n : i = 1, \ldots, k \right\}
\]

for some \(k \geq 1 \) and some \(a_i, b_i \) in \(\mathbb{Z}_m, \mathbb{Z}_n \) respectively. In fact, by Lemma 2, we can assume that

(A1) each \(a_i = 0 \) or \(a_i | m \) and, each \(b_i = 0 \) or \(b_i | n \).

We can also assume that \((a_i, b_i) \neq (0, 0) \) for each \(i = 1, \ldots, k \) and that \(a_i \nmid a_j \) or \(b_i \nmid b_j \) if \(i \neq j \) (for the same reason as before). Clearly, this means

(A2) if \(i \neq j \) and \(a_i = 0, b_j \neq 0 \), then \(b_j \nmid b_i \),

(A3) if \(i \neq j \) and \(a_i \neq 0, b_i = 0 \), then \(a_j \nmid a_i \),

(A4) if \(i \neq j \) and \(a_i \neq 0, b_i \neq 0 \), then \(a_i \nmid a_j \) or \(b_i \nmid b_j \).

In other words, we have the following result.

Theorem 4. If \(I \) is a non-zero ideal of \(\mathbb{Z}_m \times \mathbb{Z}_n \), then \(I = \bigcup \{ a_i \mathbb{Z}_m \times b_i \mathbb{Z}_n : i = 1, \ldots, k \} \) for some \(k \geq 1 \) and some \((a_i, b_i) \in \mathbb{Z}_m \times \mathbb{Z}_n \) which satisfy (A1) - (A4).

In general, if \(R_1, R_2 \) are rings with identities, then all ideals of \(R_1 \times R_2 \) have the form \(I \times J \) for some ideals \(I, J \) of \(R_1, R_2 \) respectively [5] p135, Exercise 22(a).
But this is not true for semigroup $\mathbb{Z}_m \times \mathbb{Z}_n$. For example, $K = (1,0)\mathbb{Z}_m \cup (0,1)\mathbb{Z}_n$ is an ideal of $\mathbb{Z}_m \times \mathbb{Z}_n$ by Theorem 4, but K does not equal $A \times B$ for any ideals A, B of \mathbb{Z}_m and \mathbb{Z}_n respectively. However, as an application of Theorem 4, we get a characterization of ideals in the ring $\mathbb{Z}_m \times \mathbb{Z}_n$ as follows:

Corollary 2. As a ring, the ideals of $\mathbb{Z}_m \times \mathbb{Z}_n$ are precisely the sets

$$J = u\mathbb{Z}_m \times v\mathbb{Z}_n,$$

where u and v are divisors of m and n respectively.

Proof. Let J be an ideal of \mathbb{Z}_n. If $J = \{(0,0)\}$, then $J = m\mathbb{Z}_m \times n\mathbb{Z}_n$. But, if J is non-zero, then since $\mathbb{Z}_m \times \mathbb{Z}_n$ is a principal ideal rings we have $J = (u,v)\mathbb{Z}_m \times \mathbb{Z}_n = u\mathbb{Z}_m \times v\mathbb{Z}_n$ where $u = 0$ or $u \mid m$ and $v = 0$ or $v \mid n$ by Theorem 4. Since $0\mathbb{Z}_m = t\mathbb{Z}_n$, so $J = u\mathbb{Z}_m \times v\mathbb{Z}_n$ where u, v are divisors of m, n respectively.

In view of Corollary 2 and Corollary 1, we have the number of ideals of the ring $\mathbb{Z}_m \times \mathbb{Z}_n$ where the prime decompositions of $m = p_1^{a_1} \cdots p_k^{a_k}$ and $n = q_1^{b_1} \cdots q_s^{b_s}$ is

$$d(m)d(n) = (r_1 + 1) \cdots (r_k + 1)(s_1 + 1) \cdots (s_l + 1).$$

But, for the semigroup $\mathbb{Z}_m \times \mathbb{Z}_n$ the result is completely different:

Theorem 5. The number of non-zero ideals in $\mathbb{Z}_m \times \mathbb{Z}_n$ equals the number of the sets $\{(a_1, b_1), \ldots, (a_k, b_k)\}$ where $k \geq 1$ and $(a_i, b_i) \in \mathbb{Z}_m \times \mathbb{Z}_n$ which satisfy (A1) - (A4).

Proof. Let I be a non-zero ideals of $\mathbb{Z}_m \times \mathbb{Z}_n$ and $I = \bigcup\{a_i\mathbb{Z}_m \times b_i\mathbb{Z}_n : i = 1, \ldots, r\}$, where (a_i, b_i) and (c_j, d_j) satisfy (A1) - (A4). We aim to prove that $r = s$ and $\{(a_1, b_1), \ldots, (a_r, b_r)\} = \{(c_1, d_1), \ldots, (c_s, d_s)\}$. For convenience, let $B = \{(a_1, b_1), \ldots, (a_r, b_r)\}$ and $C = \{(c_1, d_1), \ldots, (c_s, d_s)\}$. First, we note that $(a_1, b_1) \in c_1\mathbb{Z}_m \times d_1\mathbb{Z}_n$ for some $\ell \in \{1, \ldots, s\}$ and $(c_\ell, d_\ell) \in a_\ell\mathbb{Z}_m \times b_\ell\mathbb{Z}_n$ for some $k \in \{1, \ldots, r\}$, hence $a_1 = c_\ell u, b_1 = d_\ell v$ and $c_\ell = a_k u, d_\ell = b_k y$ for some $u, x \in \mathbb{Z}_m$ and $v, y \in \mathbb{Z}_n$, so $a_1 = a_k x u$ and $b_1 = b_k y v$. We claim that $(a_1, b_1) = (c_\ell, d_\ell)$. And, consider the ordered pairs $(a_k, b_k) \in B$ and $(c_\ell, d_\ell) \in C$ in the following cases:

Case 1. $a_k = 0$. Then $c_\ell = c_\ell u = 0 \cdot x = 0 = c_\ell u = a_1$ which implies $b_1 \neq d_\ell$. From $a_k = 0$, we must have $0 \neq b_k \mid n$ and thus $b_k \mid b_1$ (since $b_1 = b_k y v$), so $b_k = b_1$ otherwise it will contradict to that B satisfies (A1) - (A4). Since $b_1 = d_\ell v, d_\ell = b_\ell y$ and $d_\ell \mid n, b_k \mid n$, it follows that $d_\ell \mid b_1$ and $b_1 = b_k \mid d_\ell$ and hence $b_1 = d_\ell$.

Case 2. $b_k = 0$. By using the same arguments as given in case 1, but starting with $d_\ell = b_k y = 0 \cdot y = 0 = d_\ell v = b_1$ and $a_1 = a_k x u$ we get $a_1 = c_\ell$.

Case 3. $c_\ell = 0$. Then $a_1 = c_\ell u = 0 \cdot u = 0 = c_\ell$ which implies $b_1 \neq d_\ell$. If $b_\ell = 0$, then $d_\ell = b_k y = 0 \cdot y = 0 = d_\ell v = b_1$ which is a contradiction. So $b_k \mid n$, and since $d_\ell = b_\ell y$ we get $b_k \mid d_\ell$. Since $b_1 = d_\ell v$ and $d_\ell \mid n$, so $d_\ell \mid b_1$. Thus $b_k \mid b_1$ and $0 \neq a_k \mid a_1$ and B satisfies (A4) imply $k = 1$, hence $a_k = a_1$ and $b_k = b_1$. From $b_1 = b_k \mid d_\ell$ and $d_\ell \mid b_1$, we get $b_1 = d_\ell$.

Case 4. $d_\ell = 0$. By using the same arguments as given in case 3, but starting with $b_1 = d_\ell v = 0 \cdot v = 0 = d_\ell$ and consider a_k instead of b_k we find that $a_1 = c_\ell$.

Case 5. $a_k, b_k, c_\ell, d_\ell \not\in \{0\}$. Then $a_k \mid m, c_\ell \mid m$ and $b_k \mid n, d_\ell \mid n$. From $a_1 = a_k xu, b_1 = b_k y v$ and $a_k \mid m, b_k \mid n$, we get $a_k \mid a_1$ and $b_k \mid b_1$. Since (a_k, b_k) and (a_1, b_1) satisfy (A4), so $k = 1$, this means $a_k = a_1$ and $b_k = b_1$.

Since $c_\ell = a_k x, a_1 = c_\ell u$ and $a_k \mid m, c_\ell \mid m$, it follows that $a_1 = a_k \mid c_\ell$ which implies $a_1 = c_\ell$. From $b_1 = d_\ell v, d_\ell = b_k y$ and $d_\ell \mid n, b_k \mid n$, we get $d_\ell \mid b_1$ and $b_1 = b_k \mid d_\ell$, so $b_1 = d_\ell$.

Therefore, in each cases we get $(a_1, b_1) = (c_\ell, d_\ell)$. Similarly, we can prove that $\{(a_2, b_2), \ldots, (a_r, b_r)\} \subseteq \{(c_1, d_1), \ldots, (c_s, d_s)\}$ and hence $r \leq s$. Using the same arguments, but beginning with (c_1, d_1) we find that $\{(c_1, d_1), \ldots, (c_s, d_s)\} \subseteq \{(a_1, b_1), \ldots, (a_r, b_r)\}$, hence $s \leq r$ and so $s = r$ and the two sets are equal. □

Acknowledgment. The authors would like to thank Professor R. P. Sullivan at University of Western Australia for his help in writing this paper.

References