On Approximation by Post-Widder and Stancu Operators Preserving x^2

LUCYNA REMPULSKA
Institute of Mathematics, Poznan University of Technology Piotrowo 3A, 60-965 Poznan, Poland
e-mail: lrempuls@math.put.poznan.pl

MARIOLA SKORUPKA
Institute of Mathematics, Poznan University of Technology Piotrowo 3A, 60-965 Poznan, Poland
e-mail: mariolas@math.put.poznan.pl

Abstract. In the papers [5]-[7] was examined approximation of functions by the modified Szász-Mrakyan operators and other positive linear operators preserving $e_2(x) = x^2$. In this paper we introduce the Post-Widder and Stancu operators preserving x^2 in polynomial weighted spaces. We show that these operators have better approximation properties than classical Post-Widder and Stancu operators.

1. Introduction

1.1. The Post-Widder operators

\begin{align*}
(1) \quad P_n(f; x) &\equiv P_n(f(t); x) := \int_0^\infty f(t) p_n(x, t) dt, \quad x \in I, \ n \in N, \\
(2) \quad p_n(x, t) &:= \left(\frac{n/x}{n+1}\right)^n t^{n-1} \left\{ -\frac{nt}{x} \right\}, \\
I &= (0, \infty), \ N = \{1, 2, \cdots\}, \text{ were examined in many papers and monographs (e.g. [4]) for real-valued functions } f \text{ bounded on } I. \text{ It is known ([4], Chapter 9) that } P_n \text{ are well defined also for functions } e_k(x) = x^k, \ k \in N_0 = N \cup \{0\}, \text{ and} \\
(3) \quad P_n(e_0; x) &= 1, \quad P_n(e_1; x) = x, \quad P_n(e_2; x) = \frac{n+1}{n} x^2 \\
\text{and generally} \quad (4) \quad P_n(e_k; x) &= \frac{n(n+1) \cdots (n+k-1)}{n^k} x^k, \quad k \in N,
\end{align*}

* Corresponding author.

Received 19 June 2007; accepted 23 October 2007.

2000 Mathematics Subject Classification: 41A25, 41A36.

Key words and phrases: Post-Widder operator, Stancu operator, polynomial weighted space, approximation theorem.
for $x \in I$ and $n \in N$. Denoting by
\begin{equation}
\varphi_x(t) := t - x \quad \text{for } t \in I \text{ and a fixed } x \in I,
\end{equation}
we have
\begin{equation}
P_n \left(\varphi_x^2(t); x \right) = \frac{x^2}{n} \quad \text{for } x \in I, \ n \in N.
\end{equation}

From the results given in [4], Chapter 9, we can deduce that for every function f continuous and bounded on I there holds
\begin{equation}
\left| P_n(f; x) - f(x) \right| \leq M \omega \left(f; \frac{x}{\sqrt{n}} \right), \quad x \in I, \ n \in N,
\end{equation}
where $\omega(f; \cdot)$ is the modulus of continuity of f and $M = \text{const.} > 0$ independent on x and n.

1.2. The Stancu operators

\begin{equation}
L_n(f; x) \equiv L_n(f(t); x) := \int_0^\infty f(t) s_n(x, t) dt, \quad x \in I, \ n \in N,
\end{equation}
where
\begin{equation}
s_n(x, t) := \frac{t^{n-1}}{B(nx, n+1) (1+t)^{nx+n+1}},
\end{equation}
with the Euler beta function
\begin{equation}
B(a, b) := \int_0^1 t^{a-1}(1-t)^{b-1} dt \equiv \int_0^\infty \frac{t^{a-1}}{(1+t)^{a+b}} dt, \quad a, b > 0,
\end{equation}
were introduced in [10] for real-valued functions f bounded and locally integrable on $I = (0, \infty)$. The Stancu operators L_n are also well defined for functions $e_k(x) = x^k$, $k \in N_0$, (see [10], [1], [2]) and
\begin{equation}
L_n(e_0; x) = 1, \quad L_n(e_1; x) = x, \quad \text{for } n \in N,
L_n(e_2; x) = x^2 + \frac{x(x+1)}{n-1} \quad \text{for } n \geq 2,
\end{equation}
and generally
\begin{equation}
L_n(e_k; x) = \frac{nx(nx+1)\cdots(nx+k-1)}{n(n-1)\cdots(n-k+1)}, \quad x \in I, \ n \geq k \geq 2.
\end{equation}

In [10] was proved that for every function f continuous and bounded on I there holds the following inequality
\begin{equation}
\left| L_n(f; x) - f(x) \right| \leq \left(1 + \sqrt{x(x+1)} \right) \omega \left(f; \frac{1}{\sqrt{n-1}} \right)
\end{equation}
for $x \in I$ and $n \geq 2$, where $\omega(f; \cdot)$ is the modulus of continuity of f.

1.3. In papers [8] and [9] were examined approximation properties certain modified Post-Widder and Stancu operators for differentiable functions in polynomial weighted spaces. In [5] were investigated modified Szász-Mirakyan operators D^*_n preserving the function $e_2(x) = x^2$ and was proved that these operators have better approximation properties than classical Szász-Mirakyan operators. The similar results were given for certain positive linear operators in the papers [6] and [7].

1.4. The purpose of this note is to investigate modified Post-Widder and Stancu operators P^*_n and L^*_n preserving $e_2(x) = x^2$ in polynomial weighted spaces. These operators have better approximation properties than P_n and L_n given by (1) and (8). The definition and some properties of operators P^*_n and L^*_n will be given in Section 2. The main theorems will be given in Section 3.

1.5. First we give definition of polynomial weighted space C_r.

Similarly to [3] let $r \in N_0$,

$$w_0(x) := 1, \quad w_r(x) := (1 + x^r)^{-1} \quad \text{if} \quad r \geq 1, \quad x \in I,$$

and let $C_r \equiv C_r(I)$ be the set of all real-valued functions f defined on I, for which $w_r f$ is uniformly continuous and bounded on I and the norm is given by

$$\|f\|_r := \|f(\cdot)\|_r := \sup_{x \in I} w_r(x) |f(x)|.$$

It is obvious that if $q < r$, then $C_q \subset C_r$ and $\|f\|_r \leq \|f\|_q$ for $f \in C_q$. For $f \in C_r$, $r \in N_0$, we shall consider the modulus of continuity

$$\omega(f; C_r; t) := \sup_{0 \leq h \leq t} \|\Delta_h f(\cdot)\|_r, \quad t \geq 0,$$

where $\Delta_h f(x) = f(x + h) - f(x)$.

In this paper we shall apply the following inequalities

$$(w_r(x))^2 \leq w_{2r}(x), \quad (w_r(x))^{-2} \leq 4(w_{2r}(x))^{-1},$$

for $x \in I$ and $r \in N_0$, which immediately result from (13).

We shall denote by $M_i(r)$, $i \in N$, suitable positive constants depending only on indicated parameter r.

2. The definition and elementary properties of P^*_n and L^*_n

2.1. We introduce for $f \in C_r$, $r \in N_0$, the following modified Post-Widder operators P^*_n

$$P^*_n(f; x) := \int_0^\infty f(t) p_n(u_n(x), t) dt = P_n(f; u_n(x)), \quad x \in I, \quad n \in N,$$
where $P_n(f)$ and p_n are given by (1) and (2) and

\[u_n(x) := \sqrt{\frac{n}{n+1} x}, \]

and modified Stancu operators

\[L_n^*(f; x) := \int_0^\infty f(t) s_n(v_n(x), t) dt = L_n(f; v_n(x)) \]

for $x \in I$ and $n \geq r \geq 2$ or $n \geq 2$ if $r = 0, 1$, where $L_n(f)$ and s_n are given by (8) and (9) and

\[v_n(x) := -\frac{1 + \sqrt{1 + 4n(n-1)x^2}}{2n}. \]

2.2. The formulas (18) and (20) imply that

\[0 < u_n(x) < x, \quad 0 \leq v_n(x) \leq x \] for $x \in I$, $n \in N$.

From (17)-(20) and (1)-(4) and (8)-(11) we immediately obtain the following

Lemma 1. Let $e_k(x) = x^k$ for $k \in N_0$ and $x \in I$. Then for all $x \in I$ and $n \in N$ we have

\[P_n^*(e_0; x) = 1, \quad P_n^*(e_1; x) = u_n(x), \quad P_n^*(e_2; x) = x^2 \]

and

\[P_n^*(e_k; x) = \frac{n(n+1) \cdots (n+k-1)u_n^k(x)}{n^k} \quad \text{if } k \geq 3. \]

Moreover, for $x \in I$ and $n \geq 2$ we have

\[L_n^*(e_0; x) = 1, \quad L_n^*(e_1; x) = v_n(x), \quad L_n^*(e_2; x) = x^2 \]

and generally

\[L_n^*(e_k; x) = \frac{n u_n(x)(nu_n(x) + 1) \cdots (nu_n(x) + k - 1)}{n(n-1) \cdots (n-k+1)} \quad \text{for } n \geq k \geq 2. \]

The formulas (22) and (23) show that P_n^* and L_n^* preserve the functions e_0 and e_2.

Lemma 2. For function φ_x given by (5) there hold the following analogies of (6):

\[P_n^*(\varphi_x^2(t); x) = 2x(x - u_n(x)) \leq \frac{x^2}{n} \quad \text{for } x \in I, \quad n \in N, \]

and

\[L_n^*(\varphi_x^2(t); x) = 2x(x - v_n(x)) \leq \frac{x(x+1)}{n-1} \quad \text{for } x \in I, \quad n \geq 2. \]
Proof. We shall prove only (25) because the proof of (24) is analogous. By linearity of L^* and (5) and (23) we have

$$L_n^*(\varphi^2(t); x) = L_n^*(e_2; x) - 2x L_n^*(e_1; x) + x^2 L_n^*(e_0; x)$$

$$= 2x(x - v_n(x)) \quad \text{for } x > 0, \ n \geq 2.$$

Next, by (20) we get

$$0 < x - v_n(x) = \frac{2nx + 1 - \sqrt{1 + 4n(n-1)x^2}}{2n} \leq \frac{2x(x+1)}{2nx + 1 + 2(n-1)x} \leq \frac{x + 1}{2(n-1)x} \quad \text{for } x > 0, \ n \geq 2.$$

This completes the proof of (25). \hfill \Box

Lemma 3. Let $r \in N_0$ and let w_r be the weighted function given by (13). Then for $n \in N$ the following inequalities

(26) $\|P_n^*(1/w_r)\|_r \leq 1, \quad \|L_n^*(1/w_r)\|_r \leq 1 \quad \text{if } r = 0, 1,$

(27) $\|P_n^*(1/w_r)\|_r \leq 1 + (r-1)!, \quad \text{if } r \geq 2,$

and

(28) $\|L_n^*(1/w_r)\|_r \leq 1 + 2^{r-1}(1 + r^{r-1}) \quad \text{for } n \geq r \geq 2,$

hold. Moreover, for every $f \in C_r$ we have

(29) $\|P_n^*(f)\|_r \leq \|f\|_r \|P_n^*(1/w_r)\|_r, \quad n \in N,$

(30) $\|L_n^*(f)\|_r \leq \|f\|_r \|L_n^*(1/w_r)\|_r, \quad n \geq r.$

The formulas (17)-(20) and inequalities (29) and (30) show that P_n^*, $n \in N$, and L_n^* with $n \geq r$ are positive linear operators acting from the space C_r to C_r, $r \in N_0$.

Proof. Similarly to Lemma 2 we shall consider only operators L_n^*. The inequality (26) is obvious by (13), (23), (21) and (14). If $r \geq 2$, then by linearity of L_n^* and
(13), Lemma 1 and (21) we get

\[L^*_n(1/w^*_r; x) = L^*_n(e_0; x) + L^*_n(e_r; x) \]

\[\leq 1 + \frac{nx(nx + 1) \cdots (nx + r - 1)}{n(n - 1) \cdots (n - r + 1)} \]

\[\leq 1 + \frac{n^{-1}x(x + 1/n) \cdots (x + (r - 1)/n)}{(n - 1)(n - 2) \cdots (n - r + 1)} \]

\[\leq 1 + \frac{2^{r-1}((n-r+1)^{r-1} + r^{r-1})(x+1)^r}{(n-r+1)^{r-1}} \]

\[\leq 1 + 2^{2r-1}(1 + r^{-1})(1 + x^r) \]

for \(x \in I \) and \(n \geq r \). This inequality and (14) imply (28).

The inequality (30) immediately follows from (19) and (14).

Applying the Hölder inequality and Lemma 2, Lemma 3 and (16), we easily obtain the following

Lemma 4. Let \(r \in N_0 \) and let \(\varphi_x \) be given by (5). Then there exist \(M_i(r) = \text{const.} > 0 \), \(i = 1, 2 \), such that for \(x \in I \) and \(n \in N \)

\[w^*_r(x)P^*_n \left(\frac{\varphi(t)}{w^*_r(t)}; x \right) \leq M_1(r) \sqrt{2x(x - u_n(x))} \]

and

\[w^*_r(x)L^*_n \left(\frac{\varphi(t)}{w^*_r(t)}; x \right) \leq M_2(r) \sqrt{2x(x - v_n(x))}, \ \text{for} \ n \geq 2r. \]

3. Theorems

3.1. Denote by \(C^1_r \equiv C^1_r(I) \), with a fixed \(r \in N_0 \), the set of all functions \(f \in C_r \) which the first derivative belonging also to \(C_r \).

Theorem 1. Let \(r \in N_0 \). Then there exist \(M_i(r) = \text{const.} > 0 \), \(i = 3, 4 \), such that for every \(f \in C^1_r \), \(x \in I \) and \(n \in N \) the following inequalities

\[w^*_r(x)|P^*_n(f; x) - f(x)| \leq M_3(r) \| f' \|_{r} \sqrt{2x(x - u_n(x))} \]

and

\[w^*_r(x)|L^*_n(f; x) - f(x)| \leq M_4(r) \| f' \|_{r} \sqrt{2x(x - v_n(x))}, \ \text{for} \ n \geq 2r, \]

hold.

Proof. From (17), (18) and Lemma 1 we deduce that

\[|P^*_n(f(t); x) - f(x)| = |P^*_n(f(t) - f(x); x)| \leq P^*_n \left(\int_x^t f'(y)dy; x \right) \]
for every \(f \in C^1_r \), \(x \in I \) and \(n \in N \). Next by (13) and (14) we have
\[
\left| \int_x^t f'(y) dy \right| \leq \| f' \| \| \int_x^t \frac{dy}{w_r(y)} \| \leq \| f' \| r \left(\frac{1}{w_r(t)} + \frac{1}{w_r(x)} \right) |t - x|, \quad x, t \in I.
\]
Consequently, we get
\[
w_r(x)P_n^*(f(t); x) - f(x) \leq \| f' \| r \left\{ P_n^* \left(\frac{|\varphi_x(t)|}{w_r(t)}; x \right) + P_n^* \left(\frac{|\varphi_x(t)|}{w_0(t)}; x \right) \right\},
\]
for \(x \in I \), \(n \in N \), where \(\varphi_x \) is defined by (5). Now using (31), we obtain the desired estimation (33).

Similarly, applying (32), we obtain (34).

Theorem 2. Let \(r \in N_0 \). Then there exist \(M_i(r) = \text{const.} > 0 \), \(i = 5, 6, \) such that for every \(f \in C_r \), \(x \in I \) and \(n \in N \) we have
\[
w_r(x)P_n^*(f(t); x) - f(x) \leq M_5(r) \omega(f; C_r; \sqrt{2|x - u_n(x)|})
\]
and
\[
w_r(x)L_n^*(f; x) - f(x) \leq M_6(r) \omega(f; C_r; \sqrt{2|x - v_n(x)|}), \quad n \geq 2r,
\]
where \(\omega(f; C_r) \) is the modulus of continuity of \(f \) defined by (15).

Proof. Because the proofs of (35) and (36) are analogous, we shall prove only (35). We shall use the Steklov function \(f_h \) of \(f \in C_r \), i.e.
\[
f_h(x) := \frac{1}{h} \int_0^h f(x + t) dt, \quad x, h > 0.
\]
From (37) and (15) it follows that
\[
\| f_h - f \| r \leq \omega(f; C_r; h),
\]
\[
\| f_h \| r \leq h^{-1} \omega(f; C_r; h),
\]
for every \(f \in C_r \) and \(h > 0 \). These inequalities show that if \(f \in C_r \) with a fixed \(r \in N_0 \), then \(f_h \in C^1_r \) for every \(h > 0 \). Hence for \(f \in C_r \) and \(h > 0 \) we can write
\[
P_n^*(f(t); x) - f(x) = P_n^*(f(t) - f_h(t); x) + P_n^*(f_h(t); x) - f_h(x)
\]
\[
+ f_h(x) - f(x) \quad \text{for } x \in I, \quad n \in N.
\]
By (29), (26), (27) and (38) we see that there exists \(M_7(r) = \text{constant} > 0 \) such that
\[
w_r(x)P_n^*(f(t) - f_h(t); x) \leq M_7(r) \| f - f_h \| r
\]
\[
\leq M_7(r) \omega(f; C_r; h).
\]
Applying Theorem 1 for f_h and (39), we get

\begin{equation}
|w_r(x)| P_n^*(f_h(t); x) - f_h(x)| \leq M_3(r) \|f_h\|_r \sqrt{2x(x - u_n(x))} \\
\leq M_3(r) h^{-1} \omega(f; C_r; h) \sqrt{2x(x - u_n(x))},
\end{equation}

using (41), (42) and (38), we deduce from (40)

\begin{equation}
|w_r(x)| P_n^*(f; x) - f(x)| \leq M_8(r) \omega(f; C_r; h) \times \left\{1 + h^{-1} \sqrt{2x(x - u_n(x))}\right\}
\end{equation}

for $x > 0$, $h > 0$ and $n \in N$. Now, for given x and n setting $h = \sqrt{2x(x - u_n(x))}$ to (43), we obtain desired inequality (35) and we complete the proof. □

From Theorem 2 and Lemma 2 results the following

Corollary. For every $f \in C_r$, $r \in N_0$, we have $\lim_{n \to \infty} P_n^*(f; x) = f(x)$, $x \in I$, and this convergence is uniform on every interval $[a, b]$, $a > 0$.

The above statement is also true for Stancu operators $L_n^*_r$.

3.2. Considering the Stancu operators L_n in polynomial weighted spaces C_r and using methods of proofs of Theorem 1 and Theorem 2, we can obtain the following estimation

\begin{equation}
|w_r(x)| L_n(f; x) - f(x)| \leq M_9(r) \omega(f; C_r; \sqrt{x(x+1) \over n-1}),
\end{equation}

for every $f \in C_r$, $r \in N_0$, $x > 0$ and $n \geq 2r + 2$.

The inequalities (44), (36) and (12) show that the Stancu operators L_n^* have better approximation properties than L_n for functions $f \in C_r$, $r \in N_0$, and $n \geq 2r + 2$. Moreover, by (20) and Lemma 2 we get for arguments of moduli of continuity of f given in (36) and (44)

$$
\sqrt{\frac{x(x+1)}{n-1}} - \sqrt{2x(x - v_n(x))} = \frac{\sqrt{x(x+1)}}{n-1} - \frac{\sqrt{4x^2(x+1)}}{\sqrt{2nx + 1 + \sqrt{1 + 4n(n-1)x^2}}} = \frac{\sqrt{x(x+1)}}{n-1} \left(1 - \frac{\sqrt{4(n-1)x}}{\sqrt{2nx + 1 + \sqrt{1 + 4n(n-1)x^2}}}\right)
$$
On Approximation by Post-Widder and Stancu Operators Preserving x^2

\[
\sqrt{n-1} \frac{x(x+1)}{\sqrt{1+\frac{4n(n-1)x^2}{2n^2+1} - \frac{2(n-1)x + 2x + 1}{\sqrt{1+\frac{4n(n-1)x^2}{2n^2+1} + 4(n-1)x}}}} \\
\times \frac{1}{\sqrt{2nx+1 + \sqrt{1+4n(n-1)x^2 + 4(n-1)x}}} \\
> \sqrt{n-1} \frac{x(x+1)}{2nx+1 + \sqrt{4n^2+2 + \sqrt{4(n-1)x}}} \\
> \sqrt{n-1} \frac{x(x+1)}{2n^2+2} > \frac{x(x+1)}{4n+1},
\]

for all $x > 0$ and $n \geq 2r + 2$.

Analogously, estimations (7), (35) and (24) show that $P_n^*, n \in N$, have better approximation properties than P_n for functions $f \in C_r$ (see [8]). Moreover, by (7), (35) and (18) we can obtain

\[
\frac{x}{\sqrt{n}} - \sqrt{2x(x-u_n(x))} \geq \frac{x}{4(n+1)\sqrt{n}} \quad \text{for } x > 0 \text{ and } n \in N.
\]

References