Meromorphic Function Sharing Two Small Functions with Its Derivative

KAI LIU* AND XIAO-GUANG QI
School of Mathematics, Shandong University, Jinan, 250100 Shandong, P.R.China
e-mail: liukai418@gmail.com and xiaogqi@mail.sdu.edu.cn

Abstract. In this paper, we deal with the problem of uniqueness of meromorphic functions that share two small functions with their derivatives, and obtain the following result which improves a result of Yao and Li: Let \(f(z) \) be a nonconstant meromorphic function, \(k > 5 \) be an integer. If \(f(z) \) and \(g(z) = a_1(z)f(z) + a_2(z)f^{(k)}(z) \) share the value 0 CM, and share \(b(z) \) IM, \(N_E(r, f = 0 = f^{(k)}) = S(r) \), then \(f \equiv g \), where \(a_1(z), a_2(z) \) and \(b(z) \) are small functions of \(f(z) \).

1. Introduction and main results

In this paper, a meromorphic function will mean meromorphic in the whole complex plane. We say that two meromorphic functions \(f \) and \(g \) share a finite value \(a \) IM (ignoring multiplicities) when \(f - a \) and \(g - a \) have the same zeros. If \(f - a \) and \(g - a \) have the same zeros with the same multiplicities, then we say that \(f \) and \(g \) share the value \(a \) CM (counting multiplicities).

Denote by \(N(r, f = b = g) \) the reduced counting function of the common zeros of \(f - b \) and \(g - b \) ignoring the multiplicities, and \(N_E(r, f = b = g) \) the reduced counting function of the common zeros of \(f - b \) and \(g - b \) with the same multiplicities. We say that \(f \) and \(g \) share \(b \) IM* provided that

\[
N(r, \frac{1}{f - b}) - N(r, f = b = g) = S(r, f)
\]

and

\[
N(r, \frac{1}{g - b}) - N(r, f = b = g) = S(r, f).
\]

Similarly, we say that \(f \) and \(g \) share \(b \) CM* provided that

\[
N(r, \frac{1}{f - b}) - N_E(r, f = b = g) = S(r, f)
\]

and

\[
N(r, \frac{1}{g - b}) - N_E(r, f = b = g) = S(r, f).
\]

* Corresponding author.

Received 3 September 2007; accepted 19 September 2008.
2000 Mathematics Subject Classification: 30D35.
Key words and phrases: meromorphic function, uniqueness, sharing values.
This work was supported by the NNSF of China (No.10671109).
It is assumed that the reader is familiar with the standard symbols and fundamental results of Nevanlinna Theory, as found in [4], [5]. In 1986, Frank-Weissenborn proved the following result.

Theorem A([1]). Let \(f \) be a nonconstant meromorphic function, \(a, b \) be two distinct finite complex number. If \(f \) and \(f^{(k)} \) share the value \(a, b \) CM, then \(f \equiv f^{(k)} \).

Frank asked the following question.

Question 1. Does the Theorem A hold if we replace the condition that \(f \) and \(f^{(k)} \) share \(b \) CM by the condition that \(f \) and \(f^{(k)} \) share \(b \) IM?

The following example given by Ping-Li shows that the answer to Question 1 is, in general, negative. Let \(a_1 \) be any finite constant, \(a_2 = a_1 + \sqrt{2}i \), \(\omega \) be a nonconstant solution of the Riccati differential equation

\[
\omega' = (\omega - a_1)(\omega - a_2)
\]

and let

\[
f = (\omega - a_1)(\omega - a_2) - \frac{1}{3}.
\]

It is easy to verify that

\[
f'' = 6\omega' f,
\]

\[
f'' + \frac{1}{6} = 6(f + \frac{1}{6})^2.
\]

Since 0 is the Picard value of \(\omega' \), then 0 must be a CM shared value of \(f \) and \(f'' \). It is easy to see that \(f \) and \(f'' \) share the value \(-\frac{1}{6}\) IM, but \(f \not\equiv f'' \).

In 1990, Yang proved the following result.

Theorem B([3]). Let \(f \) be a nonconstant entire function, \(k \geq 2 \) be an integer, \(a \neq 0 \) be a finite constant. If 0 is the Picard value of \(f \) and \(f^{(k)} \), and if \(f \) and \(f^{(k)} \) share a IM, then \(f = e^{Az + B}, A, B \) be two constants, where \(A^5 = 1 \), and so that \(f \equiv f^{(k)} \).

It is natural to ask what results can be obtained if \(f^{(k)} \) is replaced by a differential polynomial of \(f \), and the values 0 and \(a \) are replaced by the small functions of \(f \)? In 2006, Yao and Li proved the next result.

Theorem C([7]). Let \(f(z) \) be a nonconstant meromorphic function, \(a_1(z), a_2(z) \) and \(b(z) \) be small functions of \(f(z) \), and let \(g(z) = a_1(z)f + a_2(z)f' \). If \(f \) and \(g \) share the value 0 CM*, and share the function \(b(z) \) IM*, then \(f \equiv g \) or \(f \) takes one of the following two forms:

1. \(f = \frac{b}{h} \) and \(a_1b + a_2b' = -b \), where \(h \) satisfies \(\frac{h'}{h} = -\frac{1}{a_2} \).
2. \(f = \frac{a_1}{b} \) and \(a_1b + a_2b' = 0 \), where \(h \) satisfies \(\frac{h'}{h} = -\frac{2}{a_2} \).

In this paper, we obtained the following results.
Theorem 1. Let f be a nonconstant meromorphic function, $k(k > 5)$ be a positive integer, $a_1(z)$, $a_2(z)$ and $b(z)$ be small functions of f, and let $g(z) = a_1(z)f + a_2(z)f^{(k)}$. If f and g share the value 0 CM, share the function $b(z)$ IM, and $N_E(r, f = 0 = f^{(k)}) = S(r)$, then $f \equiv g$.

Theorem 2. Let f be a nonconstant meromorphic function, k be a positive integer, $a_1(z)$, $a_2(z)$ and $b(z)$ be small functions of f, and let $g(z) = a_1(z)f + a_2(z)f^{(k)}$. If f and g share the value 0 CM, share the function $b(z)$ IM, if $N_E(r, f = 0 = f^{(k)}) = S(r)$ and $\Theta(\infty, f) > \frac{k}{2}$, then $f \equiv g$.

Corollary 1. Let f be a nonconstant entire function, and $g(z) = a_1(z)f + a_2(z)f^{(k)}$. If f and g share the value 0 CM, and share the function $b(z)$ IM, then $f \equiv g$, where $a_1(z)$, $a_2(z)$ and $b(z)$ are defined as in Theorem 2.

Theorem 3. Let f be a nonconstant meromorphic function, $a_1(z)$, \cdots, $a_k(z)$ ($k > 2$) and $b(z)$ be small functions of f, and let $L(f) = W(a_1, a_2, \cdots, a_k, f)$, where $W(a_1, a_2, \cdots, a_k, f)$ is the Wronskian of a_1, \cdots, a_k, f. If f and $L(f)$ share $b(z)$ IM and

$$N(r, \frac{1}{f}) + N(r, \frac{1}{L}) = S(r, f),$$

then $f = L(f)$.

2. Lemmas

Lemma 1([8]). Let f be a nonconstant meromorphic function, k be a positive integer, then

$$N(r, \frac{1}{f^{(k)}}) < N(r, \frac{1}{f}) + kN(r, f) + S(r, f),$$

(2.1)

$$N(r, \frac{f^{(k)}}{f}) < N(r, \frac{f}{f}) + kN(r, f) + S(r, f),$$

(2.2)

$$N(r, \frac{f^{(k)}}{f}) < kN(r, f) + N(r, \frac{1}{f}) + S(r, f).$$

(2.3)

Suppose that f and g share the value a IM, and let z_0 be a a-point of f of order p, a a-point of g of order q. We denote by $N_L(r, \frac{1}{f - a})$ the counting function of those a-points of f where $p > q$, and we denote by $N_L(r, \frac{1}{f - a})$ the corresponding counting function that ignores the multiplicities.

Lemma 2([6]). Let f be a nonconstant meromorphic function. If f and g share the value 1 IM, then

$$N_L(r, \frac{1}{f^{(k)} - 1}) < N(r, \frac{1}{f}) + N(r, f) + S(r, f).$$

(2.4)
Lemma 3. Let f be a nonconstant meromorphic function, $a_1(z)$, $a_2(z)$ and $b(z)$ be small functions of f, and let $g(z) = a_1 f + a_2 f^{(k)}$, where k is a positive integer. If f and g share the value 0 CM, and share the function b IM, $N_E(r, f = 0 = f^{(k)}) = S(r)$ and if $f \not\equiv g$, then
\[
N(r, \frac{1}{f}) + N(r, \frac{1}{g}) = S(r).
\]

Proof. Since f and g share $0, b$ IM, and
\[
N(r, f) = N(r, g) + S(r, f),
\]
from the second fundamental theorem, we have
\[
S(r, f) = S(r, g) = S(r).
\]
Noticing that f and g share the value 0 CM and $N_E(r, f = 0 = f^{(k)}) = S(r)$, we have
\[
N(r, f = 0 = g) \leq N(r, \frac{1}{a_2}) \leq S(r)
\]
or
\[
N(r, f = 0 = g) \leq N(r, a_2) \leq S(r).
\]
So we get
\[
N(r, \frac{1}{f}) + N(r, \frac{1}{g}) = S(r).
\]

Lemma 4([2]). Let f be a transcendental meromorphic function, $a_1(z)$, $a_2(z)$, \ldots, $a_k(z)$ $(k > 2)$ be linearly independent small functions of f, $L(f) = W(a_1, a_2, \ldots, a_k, f)$ be the Wronskian of a_1, \ldots, a_k, f. Then
\[
kN(r, f) \leq N(r, \frac{1}{L}) + (1 + \varepsilon)N(r, f) + S(r, f),
\]
where ε is any given positive number.

3. Proof of Theorem 1

From the second fundamental theorem, Lemma 1 and Lemma 3, we have
\[
T(r, g) \leq N(r, g) + N(r, \frac{1}{g}) + N(r, \frac{1}{g - b}) + S(r)
\]
\[
\leq N(r, f) + N(r, \frac{1}{g - b}) + S(r).
\]
Since f and g share the small function $b(z)$ IM, we obtain

$$T(r, g) \leq \mathcal{N}(r, f) + \mathcal{N}(r, \frac{1}{f - 1}) + S(r)$$

$$\leq \mathcal{N}(r, f) + \mathcal{N}(r, \frac{1}{a_1 + a_2 f^{(k)}}) + S(r)$$

$$\leq \mathcal{N}(r, f) + T(r, \frac{f^{(k)}}{f}) + S(r)$$

$$\leq \mathcal{N}(r, f) + N(r, \frac{f^{(k)}}{f}) + S(r)$$

$$\leq (k + 1)\mathcal{N}(r, f) + S(r)$$

$$\leq N(r, g) + S(r)$$

$$\leq T(r, g) + S(r),$$

so we have

(3.1) $$T(r, g) = (k + 1)\mathcal{N}(r, f) + S(r), \quad N(r, f) = \mathcal{N}(r, f) + S(r).$$

Let $G = \frac{g}{b}$, $F = \frac{f}{b}$ and

$$H = \frac{G''}{G'} - 2 \cdot \frac{G'}{G - 1} - \frac{F''}{F'} + 2 \cdot \frac{F'}{F - 1}.$$

By the Lemma of logarithmic derivatives, we have $m(r, H) = S(r)$. Since f and g share the value b IM, and share 0 CM, we know that F and G share the value b IM*, and share 0 CM*, then

(3.2) $$N(r, H) = \mathcal{N}(r, F) + \mathcal{N}_L(r, \frac{1}{F - 1}) + \mathcal{N}_L(r, \frac{1}{G - 1}) + \mathcal{N}_0(r, \frac{1}{F'}) + \mathcal{N}_0(r, \frac{1}{G'}) + S(r),$$

where $\mathcal{N}_0(r, \frac{1}{F'})$ denotes the reduced counting function of F' which are not the zeros of F and $F - 1$. $\mathcal{N}_0(r, \frac{1}{G'})$ are similarly defined. From the second fundamental theorem, we have

(3.3) $$T(r, F) \leq \mathcal{N}(r, F) + \mathcal{N}(r, \frac{1}{F - 1}) - \mathcal{N}_0(r, \frac{1}{F'}) + S(r, F),$$

(3.4) $$T(r, G) \leq \mathcal{N}(r, G) + \mathcal{N}(r, \frac{1}{G - 1}) - \mathcal{N}_0(r, \frac{1}{G'}) + S(r, G).$$

If $H \neq 0$, by calculation, we know that the common simple zeros of $F - 1$ and $G - 1$ are the zeros of H, it follows that

(3.5) $$N^{(1)}_E(r, \frac{1}{F - 1}) \leq N(r, \frac{1}{H}) \leq T(r, H) = N(r, H) + S(r)$$
and
\[
\overline{N}(r, \frac{1}{F-1}) + \overline{N}(r, \frac{1}{G-1}) = 2N^{(1)}_E(r, \frac{1}{F-1}) + 2\overline{N}_L(r, \frac{1}{F-1}) + 2N^{(2)}_E(r, \frac{1}{F-1}) + \overline{N}_L(r, \frac{1}{G-1}) + 2N^{(2)}_E(r, \frac{1}{F-1}) + N(r, F - 1) + N(r, G - 1) + N_0(r, F) + N_0(r, G).
\]

Combining (3.2) – (3.6), we have
\[
T(r, F) + T(r, G) \leq 3\overline{N}(r, F) + 3\overline{N}_L(r, \frac{1}{F-1}) + 2\overline{N}_L(r, \frac{1}{G-1}) + 2N^{(2)}_E(r, \frac{1}{F-1}) + N(r, F - 1) + N(r, G - 1) + S(r)
\leq 3\overline{N}(r, F) + \overline{N}_L(r, \frac{1}{F-1}) + 2\overline{N}_L(r, \frac{1}{G-1}) + N(r, F - 1) + T(r, F) + S(r).
\]

Therefore
\[
T(r, G) \leq 3\overline{N}(r, F) + \overline{N}_L(r, \frac{1}{F-1}) + 2\overline{N}_L(r, \frac{1}{G-1}) + S(r).
\]

From Lemma 2 and Lemma 3, we get
\[
T(r, G) = (k + 1)\overline{N}(r, f) \leq 6\overline{N}(r, f) + S(r).
\]

Since \(k \geq 6 \), we get from (3.1) that \(T(r, f) = S(r, f) \), which is impossible. Hence, \(H \equiv 0 \). By integration two times, we have
\[
\frac{1}{G - 1} = \frac{A}{F - 1} + B,
\]

where \(A \neq 0 \) and \(B \) are constants. We rewrite (3.8) in the following forms
\[
F = \frac{(B - A)G + (A - B - 1)}{BG - (B + 1)},
\]
\[
G = \frac{(B + 1)F + (A - B - 1)}{BF + (A - B)}.
\]

We distinguish the following three cases.
Case 1. If $B \neq 0, -1$, then

$$N(r, 1/G - B) = N(r, F).$$

By the second fundamental theorem, Lemma 1 and the definitions of F and G, we have

$$T(r, G) < N(r, G) + N(r, 1/G) + N(r, 1/(G - B + 1)) + S(r)$$
$$< 2N(r, f) + N(r, 1/g) + S(r)$$
$$< 2N(r, f) + S(r).$$

From the assumption and (3.1), this is impossible.

Case 2. If $B = -1$, then

$$G = \frac{A}{-F + A + 1}, \quad F = (A + 1)G - A.$$

If $A \neq -1$, then

$$N(r, 1/(G - A + 1)) = N(r, 1/F).$$

By the same reasoning as in Case 1, we get a contradiction. Thus $A = -1$, and so $FG \equiv 1, fg = b^2$. We obtain

$$N(r, f) + N(r, 1/f) = S(r).$$

It follows that

$$2T(r, \frac{f}{b}) = T(r, \frac{f^2}{b^2}) = T(r, \frac{b^2}{f^2}) + O(1)$$
$$= T(r, \frac{g}{f}) + O(1) = T(r, a_1 + a_2 \frac{f^{(k)}}{f}) + O(1)$$
$$= S(r, f).$$

This is impossible.

Case 3. If $B = 0$, by the similar discussion as the Case 2, if $A \neq 1$, we get a contradiction. Therefore $A = 1$, and so $f \equiv g$. The proof of Theorem 1 is thus completed.

4. Proof of Theorem 2

From the proof of Theorem 1, if $H \neq 0$, we obtain from (3.7) that

$$T(r, f) \leq 6N(r, f) + S(r, f).$$
This contradicts the assumption that $\Theta(\infty, f) > \frac{5}{6}$. Hence $H \equiv 0$. By the same reasoning as in the proof of Theorem 1, we have $f \equiv g$.

Question 2. Is it true that $f \equiv g$ if $1 < k \leq 5$?

5. Proof of Theorem 3

If $f \not\equiv L$, then $L \not\equiv 1$. Let z_0 be the common zero of $f - b$ and $L - b$, not a zero or a pole of b, then $\frac{L(z_0)}{f(z_0)} = 1$. Since f and $L(f)$ share b IM, from the lemma of logarithmic derivatives, we get

$$N(r, \frac{1}{L - b}) \leq N(r, \frac{1}{L}) + S(r, f) \leq T(r, \frac{L}{f}) \leq N(r, \frac{L}{f}) + S(r, f) \leq N(r, \frac{1}{f}) + kN(r, f) + S(r, f).$$

From the second fundamental theorem,

$$T(r, L) \leq \overline{N}(r, L) + \overline{N}(r, \frac{1}{L}) + S(r, f) \leq \overline{N}(r, f) + k\overline{N}(r, f) + S(r, f) \leq N(r, f) + kN(r, f) + S(r, f) \leq T(r, L) + S(r, f),$$

$$T(r, f) \leq \overline{N}(r, f) + \overline{N}(r, \frac{1}{f}) + S(r, f) \leq \overline{N}(r, f) + k\overline{N}(r, f) + S(r, f)$$

(5.1) \quad = (k + 1)\overline{N}(r, f) + S(r, f).

So we get

(5.2) \quad \overline{N}(r, \frac{1}{L - b}) = k\overline{N}(r, f) + S(r, f),

and

(5.3) \quad N(r, f) = \overline{N}(r, f) + S(r, f).

We know that the poles of f “almost all” are simple. Let

$$\alpha = \frac{L'}{L} - (k + 1)\frac{f'}{f}.$$
By the lemma of logarithmic derivatives, we get $m(r, \alpha) = S(r, f)$. Since the poles of f “almost all” are simple. By calculation, we know that the simple pole are not the pole of α. Therefore $N(r, \alpha) = S(r, f)$. Hence we have $T(r, \alpha) = S(r, f)$. We distinguish the following two cases.

Case 1. If f is a rational function, since $T(r, \alpha) = S(r, f)$, then α must be a constant, and $L = f^{k+1}Ce^{\alpha z}$, where C is a nonzero constant. If $\alpha \neq 0$, then L is not a rational function, which is a contradiction. Hence $\alpha = 0$, and thus $L = Cf^{k+1}$. Since $T(r, b) = S(r, f)$, $b \neq 0$, f and $L(f)$ share b IM , the equation $C\omega^{k+1} - b = 0$ have $k + 1$ different roots. We select a root ω_0 of this equation such that $\omega_0 \neq b$, and f assumes the value ω_0 which is possible. Since $k + 1 \geq 3$, and f is a rational function. If z_0 is a zero of $f - \omega_0$, then $Cf^{k+1}(z_0) = b$. Since f and $L(f)$ share b IM, we have $f(z_0) = b$, therefore $\omega_0 = b$, which is a contradiction.

Case 2. If f be a transcendental meromorphic function, then by Lemma 4, we know that $N(r, f) = S(r, f)$. Hence from (4.1) and (4.3), we get $T(r, f) = S(r, f)$. This is impossible.

Hence $f = L$, the proof of Theorem 3 is thus proved.

Question 3. If we replace L by a more general differential polynomial of f, is it true that $f = L$?

References

