On Comaximal Graphs of Near-rings

Patchirajulu Dheena
Department of Mathematics, Annamalai University, Annamalainagar - 608002, Tamilnadu, India
e-mail: dheenap@yahoo.com

Balasubramanian Elavarasan*
Department of Mathematics, K. S. R. College of Engineering, KSR Kalvinagar, Tiruchengode - 637209, Namakkal District, Tamilnadu, India
e-mail: belavarasan@gmail.com

Abstract. Let N be a zero-symmetric near-ring with identity and let $\Gamma(N)$ be a graph with vertices as elements of N, where two different vertices a and b are adjacent if and only if $\langle a \rangle + \langle b \rangle = N$, where $\langle x \rangle$ is the ideal of N generated by x. Let $\Gamma_1(N)$ be the subgraph of $\Gamma(N)$ generated by the set $\{n \in N : \langle n \rangle = N\}$ and $\Gamma_2(N)$ be the subgraph of $\Gamma(N)$ generated by the set $N\setminus v(\Gamma_1(N))$, where $v(G)$ is the set of all vertices of a graph G. In this paper, we completely characterize the diameter of the subgraph $\Gamma_2(N)$ of $\Gamma(N)$. In addition, it is shown that for any near-ring, $\Gamma_2(N)\setminus M(N)$ is a complete bipartite graph if and only if the number of maximal ideals of N is 2, where $M(N)$ is the intersection of all maximal ideals of N and $\Gamma_2(N)\setminus M(N)$ is the graph obtained by removing the elements of the set $M(N)$ from the vertices set of the graph $\Gamma_2(N)$.

1. Preliminaries

Throughout this paper N is a zero-symmetric near-ring with identity. $M(N)$ denotes the intersection of all maximal ideals of N, $\text{Max}(N)$ denotes the set of all maximal ideals of N, $\langle x \rangle$ denotes the ideal of N generated by x and $v(G)$ denotes the set of all vertices of a graph G.

For any vertices x, y in a graph G, if x and y are adjacent, we denote it as $x \approx y$. A graph is said to be connected if for each pair of distinct vertices v and w, there is a finite sequence of distinct vertices $v_0 = v, v_2, \ldots, v_n = w$ such that each pair $\{v_i, v_{i+1}\}$ is an edge. Such a sequence is said to be a path and the distance, $d(v, w)$, between connected vertices v and w is the length of the shortest path connecting them. The diameter of a connected graph is the supremum of the distances between vertices. The degree of a vertex v in G is the number of edges of G incident with v. Let G_1 be a subgraph of a graph G and $v \in G_1$. Then $\text{deg}_{G_1}(v)$ is the number of edges of G_1 incident with v. An r-partite graph is one whose vertex set can be

* Corresponding author.

Received 16 May 2008; accepted 13 June 2008.
2000 Mathematics Subject Classification: 16Y30, 13A99.
Key words and phrases: ideal, diameter, complete and complete bipartite graph.
partitioned into r subsets so that no edge has both ends in any one subset. Let V be the set of vertices of a graph G and $V_1 \subseteq V$. Then $G \setminus V_1$ is the graph obtained by removing the vertices of the set V_1 from the vertices set of the graph G. A complete r-partite graph is one in which each vertex is joined to every vertex that is not in the same subset. The complete bipartite (i.e., 2-partite) graph with part sizes m and n is denoted by $K_{m,n}$. A graph in which each pair of distinct vertices is joined by an edge is called a complete graph.

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs with disjoint vertices set V_1 and edges set E_1. The join of G_1 and G_2 is denoted by $G = G_1 \cup G_2$ with vertices set $V_1 \cup V_2$ and the set of edges is $E_1 \cup E_2 \cup \{x \approx y : x \in V_1$ and $y \in V_2\}$. Following Mason [4], an ideal I of N is called completely reflexive if $ab \in I$ implies $ba \in I$ for $a, b \in N$. In [2], Beck considered $\Gamma(R)$ as a graph with vertices the elements of a commutative ring R, where two different vertices a and b are adjacent if and only if $ab = 0$. He studied finitely colorable rings with this graph structure and in [1], Anderson and Naseer have made further studies of finitely colorable rings. In [6], Sharma and Bhatwadekar defined another graph structure on a commutative ring R with vertices the elements of R and where two distinct vertices a and b are adjacent if and only if $(a) + (b) = R$.

In this paper, we extend the graph structure of rings as defined by Sharma and Bhatwadekar and the results obtained by H. R. Maimani et al. [3] for commutative rings near-rings (not necessarily commutative). Let N be a near-ring and let $\Gamma(N)$ be a graph with vertices the elements of N and where two different vertices a and b are adjacent if and only if $(a) + (b) = N$.

Let $\Gamma_1(N)$ be the subgraph of $\Gamma(N)$ generated by the set $\{n \in N : \langle n \rangle = N\}$ and $\Gamma_2(N)$ be the subgraphs of $\Gamma(N)$ generated by the set $N\setminus \nu(\Gamma_1(N))$. Then clearly $\Gamma(N) = \Gamma_1(N) \cup \Gamma_2(N)$. If N is a commutative ring, then the set of vertices of $\Gamma_1(N)$ consists of unit elements of N. Other definitions and basic concepts in near-ring theory can be found in G.Pilz [5].

2. Main results

Theorem 2.1. If $\{P_1, P_2, \ldots, P_n\}$ is a finite family of prime ideals of N with $I \subseteq \bigcup_{i=1}^n P_i$ for any sub near-ring I of N, then $I \subseteq P_i$ for some i.

Proof. We may assume that I is not contained in the union of any collection on $n - 1$ of the P_i's. If so, we can simply replace n by $n - 1$. Thus for each i, we can find an element $a_i \in I$ with $a_i \notin P_1 \cup \cdots \cup P_{i-1} \cup P_{i+1} \cup \cdots \cup P_n$. Take $n = 2$, with $I \not\subseteq P_1$ and $I \not\subseteq P_2$. Then $a_1 \in P_1$, $a_2 \notin P_1$, and so $a_1 + a_2 \notin P_1$. Similarly, $a_1 \notin P_2$, $a_2 \in P_2$, and so $a_1 + a_2 \notin P_2$. Thus $a_1 + a_2 \notin I \subseteq P_1 \cup P_2$, contradicting $a_1, a_2 \in I$. Now assume that $n > 2$ and suppose that $I \not\subseteq P_i$ for all i. Observe that $\langle a_1 \rangle \langle a_2 \rangle \cdots \langle a_{n-1} \rangle \subseteq P_1 \cap P_2 \cdots \cap P_{n-1}$, but $a_n \notin P_1 \cup P_2 \cdots \cup P_{n-1}$. Now for all $i = 1, 2, \ldots, n - 1$, we have $a_i \notin P_n$, and so $\langle a_1 \rangle \langle a_2 \rangle \cdots \langle a_{n-1} \rangle \not\subseteq P_n$. Then there exists $t \in \langle a_1 \rangle \langle a_2 \rangle \cdots \langle a_{n-1} \rangle$ such that $x = t + a_n \notin P_n$. Thus $x \in I$ and $x \notin P_1 \cup P_2 \cup \cdots \cup P_n$, a contradiction. \hfill \Box

Lemma 2.2. Let N be a near-ring. Then the following conditions hold:

(i) $\Gamma_1(N)$ is a complete graph.

(ii) $a \in M(N)$ if and only if $\deg_{\Gamma_2(N)}a = 0$.

Proof. (i) It is clear from definition.
(ii) Let \(a \in M(N) \) and suppose \(\deg_{\Gamma_2(N)} a \neq 0 \), then there exists \(b \in \Gamma_2(N) \) such that \((a) + (b) = N \). On the other hand there exists \(M \in \text{Max}(N) \) with \(b \in M \), and so \(M = N \), a contradiction. Conversely, assume that \(\deg_{\Gamma_2(N)} a = 0 \) and suppose that \(a \notin M(N) \). Then there exists \(M \in \text{Max}(N) \) such that \(a \notin M \), and so \((a) + M = N \).

Case (i): If there exists \(\{a, b\} \notin M(N) \) such that \(a \notin M \), then \((a) + (b) = N \). A contradiction. Conversely, assume that \((a) + (b) = N \). So we have the path \(a \approx x \approx b \) and so \(d(a, b) \leq 2 \).

Case (ii): If \(\{a, b\} \subseteq M(N) \), then \(M(N) = S_a \cup S_b \), where \(S_a = \{M \in \text{Max}(N) : a \in M\} \) and \(S_b = \{M \in \text{Max}(N) : b \in M\} \). Since \(a \notin M(N) \), there exists \(x \in \Gamma_2(N) \) such that \((a) + (x) = N \). Then \(x \notin M(N) \). Let \(M \in \text{Max}(N) \) such that \(b \notin M \). Then \(x \notin M \), and so \((b) + (x) \notin M(N) \). Therefore by Case (i), \(d(b, x) \leq 2 \), and so \(d(a, b) \leq 3 \).

Corollary 2.3 ([3], Lemma 2.1). Let \(R \) be a commutative ring with identity. Then the following hold:

(i) \(\Gamma_1(R) \) is a complete graph.
(ii) \(a \in J(R) \) if and only if \(\deg_{\Gamma_2(R)} a = 0 \), where \(J(R) \) denotes the Jacobson radical of \(R \).

Proof. If \(R \) is commutative ring with identity, then \(J(R) = M(R) \).

Theorem 2.4. Let \(N \) be a near-ring. Then \(\Gamma_2(N) \setminus M(N) \) is connected graph and \(\text{diam} (\Gamma_2(N) \setminus M(N)) \leq 3 \).

Proof. Let \(a, b \in \Gamma_2(N) \setminus M(N) \).

Case (i): If \(\{a, b\} \notin M(N) \) such that \(\{a, b\} \notin M(N) \), then there exists \(x \in \Gamma_2(N) \setminus M(N) \) such that \(\{a, b\} + (x) = N \). Thus \((a) + (x) = N \) and \((b) + (x) = N \). So we have the path \(a \approx x \approx b \), and so \(d(a, b) \leq 2 \).

Case (ii): If \(\{a, b\} \subseteq M(N) \), then \(M(N) = S_a \cup S_b \), where \(S_a = \{M \in \text{Max}(N) : a \in M\} \) and \(S_b = \{M \in \text{Max}(N) : b \in M\} \). Since \(a \notin M(N) \), there exists \(x \in \Gamma_2(N) \) such that \((a) + (x) = N \). Then \(x \notin M(N) \). Let \(M \in \text{Max}(N) \) such that \(b \notin M \). Then \(x \notin M \), and so \((b) + (x) \notin M(N) \). Therefore by Case (i), \(d(b, x) \leq 2 \), and so \(d(a, b) \leq 3 \).

Corollary 2.5 ([3], Theorem 3.1). Let \(R \) be a commutative ring with identity. Then \(\Gamma_2(R) \setminus J(R) \) is connected graph and \(\text{diam} (\Gamma_2(R) \setminus J(R)) \leq 3 \).

Theorem 2.6. Let \(N \) be a near-ring. Then the following conditions are equivalent:

(i) \(\Gamma_2(N) \setminus M(N) \) is a complete bipartite graph.
(ii) The cardinal number of the set \(\text{Max}(N) \) is 2

Proof. i) \(\Rightarrow \) ii) Suppose that \(\Gamma_2(N) \setminus M(N) \) is a complete bipartite graph with two parts \(V_1 \) and \(V_2 \). Set \(M_1 = V_1 \cup M(N) \) and \(M_2 = V_2 \cup M(N) \). We claim that \(M_1 \) and \(M_2 \) are maximal ideals of \(N \). Let \(x, y \in M_1 \). Consider the following three cases:

Case (i): If \(x, y \in M(N) \), then \(x - y \in M_1 \).

Case (ii): If \(x \in M(N) \) and \(y \in V_1 \), then \(x - y \notin M(N) \). If \((x - y) = N \), then \(x \notin M(N) \), a contradiction. If \(x - y \in M_2 \), then \(x - y \in V_2 \), and so \((x - y) + (y) = N \). Thus \((x) + (y) = N \), a contradiction. Therefore \(x - y \in V_1 \subseteq M_1 \).

Case (iii): Assume that \(x, y \in V_1 \). If \(x - y \notin M(N) \), then there is nothing to prove. Otherwise \(x - y \notin M(N) \). But by same argument of Case (ii), we have \(x - y \notin M_1 \).

Let \(x \in M_1 \) and \(n \in N \). If either \(x \in M(N) \) or \(n + x - n \in M(N) \), then \(M_1 \) is a normal subgroup of \(N \). So, we assume that \(x \notin M(N) \) and \(n + x - n \notin M(N) \). Since \((n + x - n) \subseteq (\langle x \rangle) \), we have \((n + x - n) \notin M(N) \). If \(n + x - n \in M_2 \), then \(n + x - n \in V_2 \), and so \((n + x - n) + (x) = N \) which implies \(N = \langle x \rangle \), a contradiction. Therefore \(n + x - n \in V_1 \subseteq M_1 \). Let \(n \in N \) and \(x \in M_1 \). If either \(x \in M(N) \) or \(nx \in M(N) \), then \(M_1 \) is right ideal of \(N \). Otherwise \(x \notin M(N) \) and \(nx \notin M(N) \).
Also \(\langle xn \rangle \neq N \). Suppose that \(xn \in M_2 \). Then \(xn \in V_2 \), and so \(\langle xn \rangle + \langle x \rangle = N \). Thus \(\langle x \rangle = N \), a contradiction. So \(xn \in M_1 \). Let \(n, n_1 \in N \) and let \(x \in M_1 \). If either \(x \in M(N) \) or \(n(n_1 + x) - nn_1 \notin M(N) \), then \(M_1 \) is a left ideal of \(N \). Otherwise \(x \notin M(N) \) and \(n(n_1 + x) - nn_1 \notin M(N) \). Also \(\langle n(n_1 + x) - nn_1 \rangle \neq N \). Suppose that \(n(n_1 + x) - nn_1 \notin M_2 \). Then \(nn_1 \in V_2 \), and so \(\langle x \rangle + \langle n(n_1 + x) - nn_1 \rangle = N \) which implies \(N = \langle x \rangle \), a contradiction. So \(n(n_1 + x) - nn_1 \notin M_1 \). So \(M_1 \) is an ideal of \(N \). Let \(x \in N \setminus M_1 \). Then \(\langle x \rangle + \langle y \rangle = N \) for all \(y \in V_1 \) which implies \(\langle x \rangle + M_1 = N \), and so \(M_1 \) is a maximal ideal of \(N \).

With the same argument, \(M_2 \) is a maximal ideal of \(N \). Now, if \(M \in \text{Max}(N) \), then \(M \subseteq M_1 \cup M_2 \), and so \(M = M_1 \) or \(M = M_2 \) by Theorem 2.1.

\(ii) \implies i) \) Let \(\text{Max}(N) = \{M_1, M_2\} \). Thus the vertices set of \(\Gamma_2(N) \setminus M(N) \) is equal to the set \((M_1 \setminus M_2) \cup (M_2 \setminus M_1) \). Let \(a \in M_1 \setminus M_2 \) and \(b \in M_2 \setminus M_1 \). Then \(\langle a \rangle + \langle b \rangle \notin M_1 \cup M_2 \) and so \(\langle a \rangle + \langle b \rangle = N \). □

Corollary 2.7([3], Theorem 2.2). Let \(R \) be a commutative ring with identity. Then the following are equivalent:

- \(i) \ \Gamma_2(R) \setminus J(R) \) is a complete bipartite graph.
- \(ii) \ \text{The cardinal number of the set Max}(R) \) is equal to \(2 \).

Theorem 2.8. Let \(N \) be a near-ring and let \(n > 1 \). Then the following hold:

- \(i) \ If \ |\text{Max}(N)| = n < \infty \), then the graph \(\Gamma_2(N) \setminus M(N) \) is \(n \)-partite.
- \(ii) \ If the graph \(\Gamma_2(N) \setminus M(N) \) is \(n \)-partite, then \(|\text{Max}(N)| \leq n \). In this case if the graph \(\Gamma_2(N) \setminus M(N) \) is not \((n-1)\)-partite, then \(|\text{Max}(N)| = n \).

Proof. The proof is similar to that of Proposition 2.3 of [3]. □

Theorem 2.9. Let \(N \) be a near-ring with \(|\text{Max}(N)| \geq 2 \). Then the following hold:

- \(i) \ \Gamma_2(N) \setminus M(N) \) is a complete \(n \)-partite graph, then \(n = 2 \).
- \(ii) \ If there exists a vertex of \(\Gamma_2(N) \setminus M(N) \) which is adjacent to every other vertex, then \(N \cong \mathbb{Z}_2 \times F \), where \(\mathbb{Z}_2 = \{0, 1\} \) is the ring under addition modulo 2 and multiplication modulo 2; \(F \) is a simple near-ring.

Proof. (i) Let \(M_1, M_2 \) be two maximal ideals of \(N \). Since the elements of \(M_1 \setminus M(N) \) are not adjacent, and at least one element of \(M_1 \setminus M(N) \) is adjacent to \(M_2 \setminus M(N) \), so \(M_1 \setminus M(N) \) and \(M_2 \setminus M(N) \) are subsets of two distinct parts of \(\Gamma_2(N) \). Suppose \(M(N) \subseteq M_1 \cap M_2 \). Then there exists \(x \in M_1 \cap M_2 \) with \(x \notin M'(N) \), and so \(x \) belongs to \(M_1 \setminus M(N) \) and \(M_2 \setminus M(N) \), a contradiction to \(M_1 \setminus M(N) \) and \(M_2 \setminus M(N) \) are subsets of two distinct parts of \(\Gamma_2(N) \). Thus \(M(N) = M_1 \cap M_2 \) and hence \(|\text{Max}(N)| = 2 \). By Theorem 2.6, we have \(n = 2 \).

(ii) Let \(x \in \Gamma_2(N) \setminus M(N) \) such that \(x \) is adjacent to every other vertex. Clearly \(\langle x \rangle \subseteq M \) for some maximal ideal \(M \) of \(N \). Suppose \(y \neq 0 \in M(N) \). Then \(x + y \notin M(N) \) and \(\langle x + y \rangle \neq N \) which implies \(\langle x \rangle + \langle x + y \rangle = N \), and so \(M = N \), a contradiction. So \(M(N) = 0 \). Now, let \(y \in M \) with \(y \notin \{0, x\} \). Then \(N = \langle x \rangle + \langle y \rangle \subseteq M \), a contradiction. Therefore \(M = \{0, x\} = \langle x \rangle \) is a maximal ideal of \(N \). Thus for each \(s \neq 0 \in \Gamma_2(N) \), having \(\langle x \rangle + \langle s \rangle = N \) implies \(N/\langle x \rangle \cong \langle s \rangle \). Thus \(\langle s \rangle = F \) is simple and hence \(N \cong \mathbb{Z}_2 \times F \). □

Corollary 2.10([3], Proposition 2.4). Let \(R \) be a commutative ring with \(|\text{Max}(R)| \geq 2 \). Then the following hold:

- \(i) \ \text{If} \Gamma_2(R) \setminus J(R) \) is a complete \(n \)-partite graph, then \(n = 2 \).
Theorem 2.12. Let \(\Pi \) be a near-ring. Then \(\text{diam}(\Pi) = 1 \) if and only if \(\Pi \cong \mathbb{Z}_2 \times \mathbb{F} \), where \(\mathbb{F} \) is a field.

Proof. The proof is similar to that of Lemma 3.2 of [3].

Proof. Let \(\Pi \) be a near-ring with at least two maximal ideals and let \(\text{diam}(\Pi) \) be a completely reflexive ideal of \(\Pi \). Then \(\text{diam}(\Pi) = 2 \) if and only if one of the following holds:

(i) \(\text{Max}(\Pi) \) is a prime ideal,

(ii) \(|\text{Max}(\Pi)| = 2 \) and \(\Pi \not\cong \mathbb{Z}_2 \times \mathbb{Z}_2 \).

Proof. Let \(\text{Max}(\Pi) \) be prime and let \(a, b \in \Pi \setminus \text{Max}(\Pi) \). Then \(\langle a \rangle \langle b \rangle \not\subseteq \text{Max}(\Pi) \), and so by the same argument as in Theorem 2.4, there exists \(t \in \Pi \setminus \text{Max}(\Pi) \). If \(\text{diam}(\Pi) = 1 \), then by Lemma 2.11, \(\Pi \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \). But \(\Pi \not\cong \mathbb{Z}_2 \times \mathbb{Z}_2 \), so \(\Pi \) is not a prime ideal, a contradiction.

Conversely, let \(\text{diam}(\Pi) = 2 \) and \(\Pi \) be nonprime. Let \(a, b \not\in \text{Max}(\Pi) \). We show that \(a \) and \(b \) are adjacent. Otherwise there exists \(t \in \Pi \setminus \text{Max}(\Pi) \) such that \(\langle a \rangle + \langle t \rangle = \langle b \rangle + \langle t \rangle = \Pi \). Then there are \(x_1, y_1, x'_1 \in \langle a \rangle \) and \(y_1, x'_1 \in \langle b \rangle \) such that \(x_1 + y_1 = x_1' + y_1 = 1 \), which implies \(x_1 x_1' + y_1 x_1' + y_1 = 1 \). Since \(x_1 x_1, y_1, x_1' \in \langle a \rangle \) and \(y_1, x_1' \in \langle b \rangle \), we have \(\langle a \rangle \langle b \rangle + \langle t \rangle = \Pi \), which implies \(\langle a \rangle \langle b \rangle \not\subseteq \text{Max}(\Pi) \), a contradiction. Therefore \(\langle a \rangle + \langle b \rangle = \Pi \), and so \(x + y = 1 \) for some \(x \in \langle a \rangle \) and \(y \in \langle b \rangle \).

Set \(S = \Pi/M(\Pi) \) and \(a_1 = x + M(\Pi) \) and \(b_1 = y + M(\Pi) \). Then \(a_1 b_1 = 0 \) and \(a_1 + b_1 = 1_S \). Since \(M(\Pi) \) is completely reflexive, we have \(\langle a_1 \rangle \langle b_1 \rangle = 0 \). If \(z \in \langle a_1 \rangle \cap \langle b_1 \rangle \), then \(z^2 \subseteq \langle a_1 \rangle \langle b_1 \rangle = 0 \). Since \(M(\Pi) \) is semiprime ideal of \(S \), we have \(z = 0 \). Thus \(\langle a_1 \rangle \cap \langle b_1 \rangle = 0 \) and hence \(S = \langle a_1 \rangle \oplus \langle b_1 \rangle \). Let \(M \) be nonzero ideal of \(\langle a_1 \rangle \) and let \(m(\neq 0) \in M \) and \(x_1(\neq 0) \in \langle b_1 \rangle \). Then by the same argument of \(a \) and \(b \), we have \(\langle m \rangle + \langle x_1 \rangle = S \) which implies \(m_1 + x_1 = 1_S \) for some \(m_1 \in \langle m \rangle \) and \(x_1' \in \langle x_1 \rangle \). Now let \(t \in \langle a_1 \rangle \). Then \(m_1 t + x_1' t = t \). Since \(x_1 t = 0 \), we have \(t = m_1 t \in M \). Thus \(\langle a_1 \rangle \) is simple. With the same argument, \(\langle b_1 \rangle \) is simple. Therefore \(|\text{Max}(S)| = 2 \), and so \(|\text{Max}(\Pi)| = 2 \).

Corollary 2.13([3], Proposition 3.3). Assume that \(R \) is not local. Then \(\text{diam}(R) = 2 \) if and only if one of the following holds:

(i) \(J(R) \) is a prime ideal.

(ii) \(|\text{Max}(R)| = 2 \) and \(R \not\cong \mathbb{Z}_2 \times \mathbb{Z}_2 \).

Acknowledgment. The authors would like to express their warmest thanks to the editor of the journal Professor Gary F. Birkenmeier for editing and communicating the paper.
References