On Compact-covering Images of Locally Separable Metric Spaces

NGUYEN VAN DUNG
Department of Mathematics, Pedagogical University of Dongthap, Vietnam
e-mail: nguyendungtc@yahoo.com

Abstract. In this paper, we give the internal characterizations of compact-covering s-(resp., \(\pi \)-)images of locally separable metric spaces. As applications of these results, we obtain characterizations of compact-covering quotient s-(resp., \(\pi \)-)images of locally separable metric spaces.

1. Introduction

Finding the internal characterizations of certain images of metric spaces is a considerable interest in general topology. In the past, many nice results have been obtained [6], [11], [12], [17], [18]. Recently, many topologists were engaged in research of internal characterizations of images of locally separable metric spaces, and some noteworthy results were shown. In [12], S. Lin, C. Liu, and M. Dai gave a characterization of quotient s-images of locally separable metric spaces. After that, S. Lin, and P. Yan characterized sequence-covering s-images of locally separable metric spaces in [13]; Y. Ikeda, C. Liu and Y. Tanaka characterized quotient compact images of locally separable metric spaces in [7]; and Y. Ge characterized pseudo-sequence-covering compact images of locally separable metric spaces in [5]. In a personal communication, the first author of [12] and [13] informs that characterizations on compact-covering s-images and compact-covering \(\pi \)-images still have no answer. Thus, it is natural to rise the following question.

Question 1.1. How are compact-covering s-(resp., \(\pi \)-)images of locally separable metric spaces characterized?

In this paper, we give the internal characterizations of compact-covering s-(resp., \(\pi \)-)images of locally separable metric spaces. As applications of these results, we obtain a characterization of compact-covering quotient s-(resp., \(\pi \)-)images of locally separable metric spaces.

Throughout this paper, all spaces are assumed to be regular and \(T_1 \), all mappings are assumed continuous and onto, \(\mathbb{N} \) denotes the set of all natural numbers. Let \(f : X \to Y \) be a mapping, \(x \in X \), and \(\mathcal{P} \) be a family of subsets of \(X \), we
denote \(st(x, \mathcal{P}) = \bigcup\{P \in \mathcal{P} : x \in P\}, \bigcup \mathcal{P} = \bigcup\{P : P \in \mathcal{P}\}, \bigcap \mathcal{P} = \bigcap\{P : P \in \mathcal{P}\}, \) and \(f(\mathcal{P}) = \{f(P) : P \in \mathcal{P}\} \).

Definition 1.2. Let \(\mathcal{P} \) be a family of subsets of a space \(X \), and \(K \) be a subset of \(X \).

1. \(\mathcal{P} \) is a cover for \(K \) in \(X \), if \(K \subset \bigcup \mathcal{P} \). When \(K = X \), a cover for \(K \) in \(X \) is a cover of \(X \) [3].
2. For each \(x \in X \), \(\mathcal{P} \) is a network at \(x \) in \(X \) [15], if \(x \in \bigcap \mathcal{P} \) and if \(x \in U \) with \(U \) open in \(X \), then \(x \in P \subset U \) for some \(P \in \mathcal{P} \).
3. \(\mathcal{P} \) is a cfp-cover for \(K \) in \(X \), if for each compact subset \(H \) of \(K \), there exists a finite subfamily \(\mathcal{F} \) of \(\mathcal{P} \) such that \(H \subset \bigcup\{C_F : F \in \mathcal{F}\} \), where \(C_F \) is closed and \(C_F \subset F \) for every \(F \in \mathcal{F} \). Note that such a \(\mathcal{F} \) is a full cover in the sense of [2], when \(K = X \), a cfp-cover for \(K \) in \(X \) is a cfp-cover for \(X \) [20].
4. \(\mathcal{P} \) is a cfp-network for \(K \) in \(X \), if for each compact subset \(H \) of \(K \) satisfying \(H \subset U \) with \(U \) open in \(X \), there exists a finite subfamily \(\mathcal{F} \) of \(\mathcal{P} \) such that \(H \subset \bigcup\{C_F : F \in \mathcal{F}\} \subset \bigcup \mathcal{F} \subset U \), where \(C_F \) is closed and \(C_F \subset F \) for every \(F \in \mathcal{F} \). Note that a cfp-network \(\mathcal{P} \) for \(K \) in \(X \) is a family to have property cc for \(K \) [14], and if \(K = X \), then \(\mathcal{P} \) is a strong \(k \)-network for \(X \) in the sense of [2].
5. \(\mathcal{P} \) is point-countable [6], if every point of \(X \) meets at most countably many members of \(\mathcal{P} \).

Definition 1.3. Let \(f : X \to Y \) be a mapping.

1. \(f \) is a compact-covering mapping [16], if every compact subset of \(Y \) is the image of some compact subset of \(X \).
2. \(f \) is a pseudo-sequence-covering mapping [7], if every convergent sequence of \(Y \) is the image of some compact subset of \(X \).
3. \(f \) is a pseudo-open mapping [1], if \(y \in \text{int} f(U) \) whenever \(f^{-1}(y) \subset U \) with \(U \) open in \(X \).
4. \(f \) is a \(\pi \)-mapping [1], if for every \(y \in Y \) and for every neighborhood \(U \) of \(y \) in \(Y \), \(d(f^{-1}(y), X - f^{-1}(U)) > 0 \), where \(X \) is a metric space with a metric \(d \).
5. \(f \) is an \(s \)-mapping [1], if \(f^{-1}(y) \) is separable for every \(y \in Y \).

Definition 1.4. Let \(X \) be a space.

1. \(X \) is a sequential space [4], if a subset \(A \) of \(X \) is closed if and only if any convergent sequence in \(A \) has a limit point in \(A \).
2. \(X \) is a Fréchet space [4], if for each \(x \in \overline{A} \), there exists a sequence in \(A \) converging to \(x \).

For terms which are not defined here, please refer to [3] and [18].
2. Results

In 1960, V. Ponomarev proved that every first-countable space is precisely an open image of some Baire zero-dimension metric space [3, 4.2 D]. The Ponomarev’s method has been generalized [14], and plays a very important role in characterizations of images of metric spaces. We shall use the above method to characterize compact-covering s-images of locally separable metric spaces.

Definition 2.1. Let \(P \) be a network for a space \(X \). Assume that there exists a countable network \(P_x \subset P \) at \(x \) in \(X \) for every \(x \in X \). For every \(n \in \mathbb{N} \), put \(\Lambda_n = \Lambda \) and endowed \(\Lambda_n \) a discrete topology. Put

\[
M = \{ a = (\alpha_n) \in \prod_{n \in \mathbb{N}} \Lambda_n : \{ P_{\alpha_n} : n \in \mathbb{N} \} \}
\]

forms a network at some point \(x_a \) in \(X \). Then \(M \), which is a subspace of the product space \(\prod_{n \in \mathbb{N}} \Lambda_n \), is a metric space and each point \(x_a \) is unique for every \(a \in M \). Define \(f : M \rightarrow X \) by \(f(a) = x_a \), then \(f \) is a mapping, and \((f, M, X, P)\) is a Ponomarev-system [14]. Note that under \(P \) being a point-countable network for \(X \), the Ponomarev-system \((f, M, X, P)\) exists.

It is well known that \(cfp \)-networks are preserved by compact-covering mappings. We shall strengthen this result on preservations of \(cfp \)-covers and \(cfp \)-networks for a compact subset without the assumption of the compact-covering property.

Lemma 2.2. Let \(f : X \rightarrow Y \) be a mapping.

(1) If \(P \) is a \(cfp \)-cover for a compact set \(K \) in \(X \), then \(f(P) \) is a \(cfp \)-cover for \(f(K) \) in \(Y \).

(2) If \(P \) is a \(cfp \)-network for a compact set \(K \) in \(X \), then \(f(P) \) is a \(cfp \)-network for \(f(K) \) in \(Y \).

Proof. (1). Let \(H \) be a compact subset of \(f(K) \). Then \(L = f^{-1}(H) \cap K \) is a compact subset of \(K \) satisfying \(f(L) = H \). Since \(P \) is a \(cfp \)-cover for \(K \) in \(X \), there exists a finite subfamily \(\mathcal{F} \) of \(P \) such that \(L \subset \bigcup \{ C_F : F \in \mathcal{F} \} \), where \(C_F \subset F \), and \(C_F \) is closed for every \(F \in \mathcal{F} \). Because \(L \) is compact, every \(C_F \) can be chosen compact. It implies that every \(f(C_F) \) is closed (in fact, every \(f(C_F) \) is compact), and \(f(C_F) \subset f(F) \). We get that \(H = f(L) \subset \bigcup \{ f(C_F) : F \in \mathcal{F} \} \), where \(f(F) \) is a finite subfamily of \(f(P) \). Then \(f(P) \) is a \(cfp \)-cover for \(f(K) \) in \(Y \).

(2). Similar to the proof of (1).

Now, we characterize compact-covering s-images of locally separable metric spaces as follows.

Theorem 2.3. The following are equivalent for a space \(X \).

(1) \(X \) is a compact-covering s-image of a locally separable metric space,
(2) X has a point-countable cover $\{X_\alpha : \alpha \in \Lambda\}$ satisfying that each X_α has a countable network \mathcal{P}_α, and each compact subset K of X has a finite compact cover $\{K_\alpha : \alpha \in \Lambda_K\}$ such that, for each $\alpha \in \Lambda_K$, \mathcal{P}_α is a cfp-network for K_α in X_α.

Proof. (1) \Rightarrow (2). Let $f : M \to X$ be a compact-covering s-mapping from a locally separable metric space M onto X. Since M is a locally separable metric space, $M = \bigoplus_{\alpha \in \Lambda} M_\alpha$, where each M_α is a separable metric space by [3, 4.4.F]. For each $\alpha \in \Lambda$, let \mathcal{B}_α be a countable base of M_α, and put $X_\alpha = f(M_\alpha)$, $\mathcal{P}_\alpha = f(\mathcal{B}_\alpha)$. Then $\{X_\alpha : \alpha \in \Lambda\}$ is a point-countable cover for X, and each \mathcal{P}_α is a countable network for X_α.

Let K be a compact subset of X. Since f is compact-covering, $K = f(L)$ for some compact subset L of M. Because L is a compact subset of M, $\Lambda_K = \{\alpha \in \Lambda : L \cap M_\alpha \neq \emptyset\}$ is finite. For each $\alpha \in \Lambda_K$, put $L_\alpha = L \cap M_\alpha$, then L_α is compact. Denote $K_\alpha = f(L_\alpha)$, we get that $\{K_\alpha : \alpha \in \Lambda_K\}$ is a finite compact cover for K.

By [2, Claim 4.2], each \mathcal{B}_α is a cfp-network for M_α. Then \mathcal{B}_α is a cfp-network for L_α in M_α. It follows from Lemma 2.2 that, for each $\alpha \in \Lambda_K$, \mathcal{P}_α is a cfp-network for K_α in X_α.

(2) \Rightarrow (1). For each $\alpha \in \Lambda$ and $n \in \mathbb{N}$, put $\mathcal{P}_\alpha = \{P_\beta : \beta \in \Gamma_\alpha\}$, and denote by $\Gamma_{\alpha,n}$ the countable set Γ_α endowed with the discrete topology. Put

$$M_\alpha = \{b_\alpha = (\beta_{\alpha,n}) \in \prod_{n \in \mathbb{N}} \Gamma_{\alpha,n} : \{P_{\beta_{\alpha,n}} : n \in \mathbb{N}\}\}$$

forms a network at some point x_{b_α} in X_α.

Then M_α, which is a subspace of the product space $\prod_{\alpha \in \Lambda} \Gamma_{\alpha,n}$, is a metric space and x_{b_α} is unique for each $b_\alpha \in M_\alpha$. Define $f_\alpha : M_\alpha \to X_\alpha$ by choosing $f_\alpha(b_\alpha) = x_{b_\alpha}$. Then the Ponomarev-system $(f_\alpha, M_\alpha, X_\alpha, \mathcal{P}_\alpha)$ exists. Put $M = \bigoplus_{\alpha \in \Lambda} M_\alpha$. Since every \mathcal{P}_α is countable, M_α is a separable metric space. Then M is a locally separable metric space. Define $f : M \to X$ by choosing $f(b_\alpha) = f_\alpha(b_\alpha)$ for every $b_\alpha \in M_\alpha$. It is easy to check that f is continuous and onto.

(a) f is an s-mapping.

For each $x \in X$, since $\{X_\alpha : \alpha \in \Lambda\}$ is a point-countable cover for X, $\Lambda_x = \{\alpha \in \Lambda : x \in X_\alpha\}$ is countable. Note that $\Gamma_{\alpha,n}$ is countable for each $n \in \mathbb{N}$, M_α is a separable metric space. Then $f_\alpha^{-1}(x)$ is a separable subset of M_α for each $\alpha \in \Lambda_x$. Hence $f^{-1}(x) = \bigcup f_\alpha^{-1}(x) : \alpha \in \Lambda_x$ is a separable subset of M. It implies that f is an s-mapping.

(b) f is compact-covering.

Let K be a compact subset of X. Then K has a finite compact cover $\{K_\alpha : \alpha \in \Lambda_K\}$ such that, for each $\alpha \in \Lambda_K$, \mathcal{P}_α is a cfp-network for K_α in X_α. It follows from [14, Theorem 2] that there exists a compact subset L_α of M_α satisfying $f_\alpha(L_\alpha) = K_\alpha$.

Put $L = \bigcup \{L_\alpha : \alpha \in \Lambda_K\}$, then L is a compact subset of M satisfying $f(L) = K$. It implies that f is compact-covering. \square

By Theorem 2.3, we get a characterization of compact-covering quotient s-
images of locally separable metric spaces as follows.

Corollary 2.4. The following are equivalent for a space X.

1. X is a compact-covering quotient (resp., pseudo-open) s-image of a locally separable metric space,
2. X is a sequential (resp., Fréchet) space with a point-countable cover \(\{X_\alpha : \alpha \in \Lambda\} \) satisfying that each X_α has a countable network P_α, and each compact subset K of X has a finite compact cover \(\{K_\alpha : \alpha \in \Lambda_K\} \) such that, for each $\alpha \in \Lambda_K$, P_α is a cfp-network for K_α in X_α.

Proof. (1) \Rightarrow (2). By Theorem 2.3, it is sufficient to prove that X is a sequential (resp., Fréchet) space. This is obvious by [3, 2.4.G].

(2) \Rightarrow (1). It follows from Theorem 2.3 that X is a compact-covering s-image of a locally separable metric space under the mapping f. We get that f is quotient (resp., pseudo-open) by [5, Remark 1.7], and [10, Lemma 2.1]. Then X is a compact-covering quotient (resp., pseudo-open) s-image of a locally separable metric space. \square

Definition 2.5. For each $n \in \mathbb{N}$, let P_n be a cover for X. \(\{P_n : n \in \mathbb{N}\} \) is a refinement sequence for X, if P_{n+1} is a refinement of P_n for each $n \in \mathbb{N}$. A refinement sequence for X is a refinement of X in the sense of [5].

Definition 2.6. Let \(\{P_n : n \in \mathbb{N}\} \) be a refinement sequence for X. \(\{P_n : n \in \mathbb{N}\} \) is a point-star network for X, if \(\{\text{st}(x, P_n) : n \in \mathbb{N}\} \) is a network at x in X for every $x \in X$. Note that a point-star network is used without the assumption of a refinement sequence in [14], and $\bigcup \{P_n : n \in \mathbb{N}\}$ is a σ-strong network for X in the sense of [7].

In Section 2 of [14], S. Lin and P. Yan extended the Ponomarev-system to a sequence of covers for a space as follows.

Definition 2.7. Let \(\{P_n : n \in \mathbb{N}\} \) be a point-star network for a space X. For every $n \in \mathbb{N}$, put $P_n = \{P_\alpha : \alpha \in A_n\}$, and A_n is endowed with discrete topology. Put

\[
M = \{a = (\alpha_n) \in \prod_{n \in \mathbb{N}} A_n : \{P_{\alpha_n} : n \in \mathbb{N}\} \text{ forms a network at some point } x_a \text{ in } X\}.
\]

Then M, which is a subspace of the product space $\prod_{n \in \mathbb{N}} A_n$, is a metric space with metric d described as follows.

Let $a = (\alpha_n), b = (\beta_n) \in M$. If $a = b$, then $d(a, b) = 0$. If $a \neq b$, then $d(a, b) = 1/\{\min\{n \in \mathbb{N} : \alpha_n \neq \beta_n\}\}$.

Define $f : M \rightarrow X$ by choosing $f(a) = x_a$, then f is a mapping, and $(f, M, X, \{P_n\})$ is a Ponomarev-system [19]. Note that without the assumption of a refinement sequence in the notion of point-star networks, then $(f, M, X, \{P_n\})$ is a Ponomarev-system in the sense of [14].
Now, we characterize compact-covering \(\pi \)-images of locally separable metric spaces as follows.

Theorem 2.8. The following are equivalent for a space \(X \).

1. \(X \) is a compact-covering \(\pi \)-image of a locally separable metric space,
2. \(X \) has a cover \(\{ X_\lambda : \lambda \in \Lambda \} \), where each \(X_\lambda \) has a refinement sequence of countable covers \(\{ P_{\lambda,n} \}_{n \in \mathbb{N}} \) satisfying the following:

 (a) \(\{ P_n \}_{n \in \mathbb{N}} \) is a point-star network of \(X \), where \(P_n = \bigcup_{\lambda \in \Lambda} P_{\lambda,n} \) for each \(n \in \mathbb{N} \),

 (b) For every compact subset \(K \) of \(X \), there exists a finite subset \(\Lambda_K \) of \(\Lambda \) such that \(K \) has a finite compact cover \(\{ K_\lambda : \lambda \in \Lambda_K \} \), and for each \(\lambda \in \Lambda_K \) and \(n \in \mathbb{N} \), \(P_{\lambda,n} \) is a cfp-cover for \(K_\lambda \) in \(X_\lambda \).

Proof. (1) \(\Rightarrow \) (2). Let \(f : M \to X \) be a compact-covering \(\pi \)-mapping from a locally separable metric space \(M \) with metric \(d \) onto \(X \). Since \(M \) is a locally separable metric space, \(M = \bigoplus_{\lambda \in \Lambda} M_\lambda \), where each \(M_\lambda \) is a separable metric space by [3, 4.4.F]. For each \(\lambda \in \Lambda \), denote \(f_\lambda = f|_{M_\lambda} \), \(X_\lambda = f_\lambda(M_\lambda) \), and \(M_\lambda = \overline{D_\lambda} \), where \(D_\lambda \) is a countable dense subset of \(M_\lambda \).

For each \(a \in M_\lambda \) and \(n \in \mathbb{N} \), put \(B(a,1/n) = \{ b \in M_\lambda : d(a,b) < 1/n \} \), \(B_{\lambda,n} = \{ B(a,1/n) : a \in D_\lambda \} \), and \(P_{\lambda,n} = f_\lambda(B_{\lambda,n}) \). It is clear that \(\{ P_{\lambda,n} : n \in \mathbb{N} \} \) is a refinement sequence of countable covers for \(X_\lambda \).

(a) \(\{ P_n \}_{n \in \mathbb{N}} \) is a point-star network for \(X \).

Since \(\{ P_{\lambda,n} : n \in \mathbb{N} \} \) is a refinement sequence for \(X_\lambda \) for each \(\lambda \in \Lambda \), \(\{ P_n : n \in \mathbb{N} \} \) is a refinement sequence for \(X \).

For each \(x \in U \) with \(U \) open in \(X \). Since \(f \) is a \(\pi \)-mapping, \(d(f^{-1}(x), M - f^{-1}(U)) > 2/n \) for some \(n \in \mathbb{N} \). Then, for each \(\lambda \in \Lambda \) with \(x \in X_\lambda \), we get \(d(f_\lambda^{-1}(x), M_\lambda - f_\lambda^{-1}(U_\lambda)) > 2/n \), where \(U_\lambda = U \cap X_\lambda \). Since \(P_{\lambda,n} \) is a cover for \(X_\lambda \), there exists \(f_\lambda(B(a,1/n)) \in P_{\lambda,n} \) such that \(x \in f(B(a,1/n)) \) for some \(a \in D_\lambda \). We shall prove that \(B(a,1/n) \subset f_\lambda^{-1}(U_\lambda) \). In fact, if \(B(a,1/n) \not\subset f_\lambda^{-1}(U_\lambda) \), then there exists \(b \in B(a,1/n) \setminus f_\lambda^{-1}(U_\lambda) \). Since \(f_\lambda^{-1}(x) \cap B(a,1/n) \neq \emptyset \), there exists \(c \in f_\lambda^{-1}(x) \cap B(a,1/n) \). Then \(d(f_\lambda^{-1}(x), M_\lambda - f_\lambda^{-1}(U_\lambda)) \leq d(c,b) \leq d(c,a) + d(a,b) < 2/n \). It is a contradiction. So \(B(a,1/n) \subset f_\lambda^{-1}(U_\lambda) \), thus \(f_\lambda(B(a,1/n)) \subset U_\lambda \). Then \(st(x,P_{\lambda,n}) \subset U_\lambda \), and hence \(\bigcup \{ st(x,P_{\lambda,n}) : \lambda \in \Lambda \text{ with } x \in X_\lambda \} \subset U \). It implies that \(st(x,P_n) \subset U \).

Hence, \(\{ P_n \}_{n \in \mathbb{N}} \) is a point-star network for \(X \).

(b) For each compact subset \(K \) of \(X \), since \(f \) is compact-covering, \(K = f(L) \) for some compact subset \(L \) of \(M \). By compactness of \(L \), \(L_\lambda = L \cap M_\lambda \) is compact and \(\Lambda_K = \{ \lambda \in \Lambda : L_\lambda \neq \emptyset \} \) is finite. For each \(\lambda \in \Lambda_K \), put \(K_\lambda = f(L_\lambda) \), then \(\{ K_\lambda : \lambda \in \Lambda_K \} \) is a finite compact cover for \(K \). For each \(n \in \mathbb{N} \), since \(B_{\lambda,n} \) is a cfp-cover for \(L_\lambda \), \(P_{\lambda,n} \) is a cfp-cover for \(K_\lambda \) in \(X_\lambda \) by Lemma 2.2.

(2) \(\Rightarrow \) (1). For each \(\lambda \in \Lambda \), let \(x \in U_\lambda \) with \(U_\lambda \) open in \(X_\lambda \). We get that \(U_\lambda = U \cap X_\lambda \) with some \(U \) open in \(X \). Since \(st(x,P_n) \subset U \) for some \(n \in \mathbb{N} \), \(st(x,P_{\lambda,n}) \subset U_\lambda \).
It implies that \(\{ P_{\lambda,n} : n \in \mathbb{N} \} \) is a point-star network for \(X_\lambda \). Then the Ponomearev-system \((f_\lambda, M_\lambda, X_\lambda, \{ P_{\lambda,n} \}) \) exists. Since each \(P_{\lambda,n} \) is countable, \(M_\lambda \) is a separable metric space with metric \(d_\lambda \) described as follows. For \(a = (\alpha_n), b = (\beta_n) \in M_\lambda \), if \(a = b \), then \(d_\lambda(a, b) = 0 \), and if \(a \neq b \), then \(d_\lambda(a, b) = 1/(\min\{n \in \mathbb{N} : \alpha_n \neq \beta_n\}) \).

Put \(M = \oplus_{\lambda \in \Lambda} M_\lambda \) and define \(f : M \to X \) by choosing \(f(a) = f_\lambda(a) \) for every \(a \in M_\lambda \) with some \(\lambda \in \Lambda \). Then \(f \) is a mapping and \(M \) is a locally separable metric space with metric \(d \) as follows. For \(a, b \in M \), if \(a, b \in M_\lambda \) for some \(\lambda \in \Lambda \), then \(d(a, b) = d_\lambda(a, b) \), and otherwise, \(d(a, b) = 1 \).

(a) \(f \) is a \(\pi \)-mapping.

Let \(x \in U \) with \(U \) open in \(X \), then \(st(x, P_n) \subset U \) for some \(n \in \mathbb{N} \). So, for each \(\lambda \in \Lambda \) with \(x \in X_\lambda \), we get \(st(x, P_{\lambda,n}) \subset U_\lambda \), where \(U_\lambda = U \cap X_\lambda \). It is implies that \(d_{\lambda}(f_{\lambda}^{-1}(x), M_\lambda - f_{\lambda}^{-1}(U_\lambda)) \geq 1/n \). In fact, if \(a = (\alpha_k) \in M_\lambda \) such that \(d_{\lambda}(f_{\lambda}^{-1}(x), a) < 1/n \), then there exists \(b = (\beta_k) \in f_{\lambda}^{-1}(x) \) such that \(d_{\lambda}(a, b) < 1/n \). So \(\alpha_k = \beta_k \) if \(k \leq n \). Note that \(x \in P_{\beta_n} \subset st(x, P_{\lambda,n}) \subset U_\lambda \). Then \(f_{\lambda}(a) \in P_{\alpha_n} = P_{\beta_n} \subset st(x, P_{\lambda,n}) \subset U_\lambda \). Hence \(a \in f_{\lambda}^{-1}(U_\lambda) \). It implies that \(d_{\lambda}(f_{\lambda}^{-1}(x), a) \geq 1/n \) if \(a \in M_\lambda - f_{\lambda}^{-1}(U_\lambda) \). So \(d_{\lambda}(f_{\lambda}^{-1}(x), M_\lambda - f_{\lambda}^{-1}(U_\lambda)) \geq 1/n \).

Therefore

\[
\begin{align*}
d(f^{-1}(x), M - f^{-1}(U)) &= \inf\{d(a, b) : a \in f^{-1}(x), b \in M - f^{-1}(U)\} \\
&= \min\{1, \inf\{d_\lambda(a, b) : a \in f_{\lambda}^{-1}(x), b \in M_\lambda - f_{\lambda}^{-1}(U_\lambda), \lambda \in \Lambda\}\} \\
&\geq 1/n > 0.
\end{align*}
\]

It implies that \(f \) is a \(\pi \)-mapping.

(b) \(f \) is compact-covering.

For each compact subset \(K \) of \(X \), there exists a finite subset \(\Lambda_K \) of \(\Lambda \) such that \(K \) has a finite compact cover \(\{ K_\lambda : \lambda \in \Lambda_K \} \), and for each \(\lambda \in \Lambda_K \) and \(n \in \mathbb{N} \), \(P_{\lambda,n} \) is a cfp-cover for \(K_\lambda \) in \(X_\lambda \). It follows from [14, Lemma 13] that \(K_\lambda = f_\lambda(L_\lambda) \) with some compact subset \(L_\lambda \) of \(M_\lambda \). Put \(L = \bigcup\{L_\lambda : \lambda \in \Lambda_K\} \), then \(L \) is a compact subset of \(M \) and \(f(L) = K \). It implies that \(f \) is compact-covering.

By Theorem 2.8, we get the following.

Corollary 2.9. The following are equivalent for a space \(X \).

1. \(X \) is a compact-covering quotient (resp., pseudo-open) \(\pi \)-image of a locally separable metric space,
2. \(X \) is a sequential (resp., Fréchet) space having a cover \(\{ X_\lambda : \lambda \in \Lambda \} \), where each \(X_\lambda \) has a refinement sequence of countable covers \(\{ P_{\lambda,n} \}_{n \in \mathbb{N}} \) satisfying the following:
 1. \(\{ P_n \}_{n \in \mathbb{N}} \) is a point-star network of \(X \), where \(P_n = \bigcup_{\lambda \in \Lambda} P_{\lambda,n} \) for every \(n \in \mathbb{N} \),
 2. For every compact subset \(K \) of \(X \), there exists a finite subset \(\Lambda_K \) of \(\Lambda \) such that \(K \) has a finite compact cover \(\{ K_\lambda : \lambda \in \Lambda_K \} \), and for each \(\lambda \in \Lambda_K \) and \(n \in \mathbb{N} \), \(P_{\lambda,n} \) is a cfp-cover for \(K_\lambda \) in \(X_\lambda \).
Proof. As in the proof of Corollary 2.4.

Finally, we give examples to illustrate theorems in the above.

Example 2.10. There exists a compact-covering s-image of a locally separable metric space which is not a compact-covering π-image of any locally separable metric space.

Proof. Let X be a sequential fan S_ω (see [9]). Then X is a Fréchet and \aleph_0-space. It follows from [18, Remark 8.(2)] that X is a compact-covering s-image of a locally separable metric space. It is clear that every compact-covering mapping is a pseudo-sequence-covering mapping, and X is not a pseudo-sequence-covering π-image of any metric space [8, Example 2.8]. Then X is not a compact-covering π-image of any locally separable metric space.

Example 2.11. There exists a compact-covering π-image of a locally separable metric space which is not a compact-covering s-image of any locally separable metric space.

Proof. Let X be a developable space Y in [7, Example 17]. Then X is a compact-covering (quotient) π-image of a locally separable metric space. Moreover, X is not a quotient s-image of any locally separable metric space. It implies that X is not a compact-covering s-image of any locally separable metric space.

References

