Entire Functions and Their Derivatives Share Two Finite Sets

CHAO MENG

Department of Mathematics, Shandong University, Jinan 250100, P. R. China
e-mail: mengchaosdu@yahoo.com.cn and mengchao@mail.sdu.edu.cn

PEI-CHU HU

Department of Mathematics, Shandong University, Jinan 250100, P. R. China
e-mail: pchu@sdu.edu.cn

Abstract. In this paper, we study the uniqueness of entire functions and prove the following theorem. Let \(n (\geq 5), k \) be positive integers, and let \(S_1 = \{ z : z^n = 1 \} \), \(S_2 = \{ a_1, a_2, \cdots, a_m \} \), where \(a_1, a_2, \cdots, a_m \) are distinct nonzero constants. If two nonconstant entire functions \(f \) and \(g \) satisfy \(E_f(S_1, 2) = E_g(S_1, 2) \) and \(E_{f^{(k)}}(S_2, \infty) = E_{g^{(k)}}(S_2, \infty) \), then one of the following cases must occur: (1) \(f = t g \), \(\{ a_1, a_2, \cdots, a_m \} = \{ t a_1, t a_2, \cdots, t a_m \} \), where \(t \) is a constant satisfying \(t^n = 1 \); (2) \(f(z) = d e^{cz}, g(z) = t d e^{-cz}, \{ a_1, a_2, \cdots, a_m \} = (-1)^k c^{2k} t \{ \frac{1}{a_1}, \cdots, \frac{1}{a_m} \} \), where \(t, c, d \) are nonzero constants and \(t^n = 1 \).

1. Introduction, definitions and results

Let \(f \) and \(g \) be two nonconstant meromorphic functions defined in the open complex plane \(\mathbb{C} \). If for some \(a \in \mathbb{C} \cup \{ \infty \} \), \(f \) and \(g \) have the same set of \(a \)-points with the same multiplicities then we say that \(f \) and \(g \) share the value \(a \) CM (counting multiplicities). If we do not take the multiplicities into account, \(f \) and \(g \) are said to share the value \(a \) IM (ignoring multiplicities). We assume that the reader is familiar with the notations of Nevanlinna theory that can be found, for instance, in [5] or [9].

Let \(S \) be a set of distinct elements of \(\mathbb{C} \cup \{ \infty \} \) and \(E_f(S) = \cup_{a \in S} \{ z : f(z) - a = 0 \} \), where each zero is counted according to its multiplicity. If we do not count the multiplicity the set \(\cup_{a \in S} \{ z : f(z) - a = 0 \} \) is denoted by \(\mathcal{E}_f(S) \). If \(E_f(S) = E_g(S) \) we say that \(f \) and \(g \) share the set \(S \) CM. On the other hand, if \(\mathcal{E}_f(S) = \mathcal{E}_g(S) \), we say that \(f \) and \(g \) share the set \(S \) IM. Let \(m \) be a positive integer or infinity and \(a \in \mathbb{C} \cup \{ \infty \} \). We denote by \(E_m(a, f) \) the set of all \(a \)-points of \(f \) with multiplicities not exceeding \(m \), where an \(a \)-point is counted according to its multiplicity. For a

* Corresponding author.

Received March 23, 2008; accepted May 16, 2008.
2000 Mathematics Subject Classification: 30D35.
Key words and phrases: entire function, share set, uniqueness.
set S of distinct elements of C we define $E_m(S, f) = \cup_{a \in S} E_m(a, f)$. If for some $a \in C \cup \{\infty\}$, $E_m(a, f) = E_m(a, g)$, we say that f and g share the value a CM. We can define $E_m(a, f)$ and $E_m(S, f)$ similarly.

In 1977, Gross [4] posed the following question.

Question. Can one find two finite sets $S_j (j = 1, 2)$ such that any two nonconstant entire functions f and g satisfying $E_f(S_j) = E_g(S_j)$ for $j = 1, 2$ must be identical?

Yi [10] gave a positive answer to the question. He proved.

Theorem A([10]). Let f and g be two nonconstant entire functions, $n \geq 5$ a positive integer, and let $S_1 = \{z : z^n = 1\}$, $S_2 = \{a\}$, where $a \neq 0$ is a constant satisfying $a^{2n} \neq 1$. If $E_f(S_j) = E_g(S_j)$ for $j = 1, 2$, then $f \equiv g$.

In 2001, Fang [3] investigated the question and proved the following theorems.

Theorem B([3]). Let f and g be two nonconstant entire functions, $n \geq 5$, k two positive integers, and let $S_1 = \{z : z^n = 1\}$, $S_2 = \{a, b, c\}$, where a, b, c are nonzero finite distinct constants satisfying $a^2 \neq bc$, $b^2 \neq ac$, $c^2 \neq ab$. If $E_f(S_1) = E_g(S_1)$ and $E_f(S_2) = E_g(S_2)$, then $f \equiv g$.

Theorem C([3]). Let f and g be two nonconstant entire functions, $n \geq 5$, k two positive integers, and let $S_1 = \{z : z^n = 1\}$, $S_2 = \{a, b\}$, where a, b are two nonzero finite distinct constants. If $E_f(S_1) = E_g(S_1)$ and $E_f(S_2) = E_g(S_2)$, then one of the following cases must occur: (1) $f \equiv g$; (2) $b = -a$, $f = e^{cz+d}$, $g = te^{-cz-d}$, where c, d, t are three constants satisfying $t^n = 1$ and $(-1)^k t e^{2k} = a^2$; (3) $f = e^{cz+d}$, $g = te^{-cz-d}$, where c, d, t are three constants satisfying $t^n = 1$ and $(-1)^k t e^{2k} = ab$; (4) $b = -a$, $f \equiv -g$.

Theorem D([3]). Let f and g be two nonconstant entire functions, $n \geq 5$, k two positive integers, and let $S_1 = \{z : z^n = 1\}$, $S_2 = \{a\}$, where $a \neq 0, \infty$. If $E_f(S_1) = E_g(S_1)$ and $E_f(S_2) = E_g(S_2)$, then one of the following cases must occur: (1) $f \equiv g$; (2) $f = e^{cz+d}$, $g = te^{-cz-d}$, where c, d, t are three constants satisfying $t^n = 1$ and $(-1)^k t e^{2k} = a^2$.

In this paper, we consider the more general sets $S_1 = \{z : z^n = 1\}$, $S_2 = \{a_1, a_2, \ldots, a_m\}$, where a_1, a_2, \ldots, a_m are distinct nonzero constants. To state the main results of this paper, we require the following notion of weighted sharing which was introduced by I. Lahiri [6], [7].

Definition 1([6]). For a complex number $a \in C \cup \{\infty\}$, we denote by $E_k(a, f)$ the set of all a-points of f where an a-point with multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m > k$. For a complex number $a \in C \cup \{\infty\}$, such that $E_k(a, f) = E_k(a, g)$, then we say that f and g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z_0 is a zero of $f-a$ with multiplicity $m(\leq k)$ if and only if it is a zero of $g-a$ with multiplicity
two nonconstant entire functions share a value which also improves Theorem B, Theorem C and Theorem D.

Theorem 3. Let $n \geq 5$, k be positive integers, and let $S_1 = \{z : z^n = 1\}$, $S_2 = \{a_1, a_2, \ldots, a_m\}$, where a_1, a_2, \ldots, a_m are distinct nonzero constants. If two nonconstant entire functions f and g satisfy $E_f(S_1, 2) = E_g(S_1, 2)$ and $E_f(S_2, \infty) = E_g(S_2, \infty)$, then one of the following cases must occur: (1) $f = tg$, $\{a_1, a_2, \ldots, a_m\} = t\{a_1, a_2, \ldots, a_m\}$, where t is a constant satisfying $t^n = 1$; (2) $f(z) = d e^{cz}$, $g(z) = \frac{1}{d} e^{-cz}$, $\{a_1, a_2, \ldots, a_m\} = (-1)^k e^{2kt}\left\{\frac{1}{a_1}, \ldots, \frac{1}{a_m}\right\}$, where t, c, d are nonzero constants and $t^n = 1$.

Theorem 2. Let $n \geq 5$, k be positive integers, and let $S_1 = \{z : z^n = 1\}$, $S_2 = \{a_1, a_2, \ldots, a_m\}$, where a_1, a_2, \ldots, a_m are distinct nonzero constants. If two nonconstant entire functions f and g satisfy $E_f(S_1, 1) = E_g(S_1, 1)$ and $E_f(S_2, \infty) = E_g(S_2, \infty)$, then one of the following cases must occur: (1) $f = tg$, $\{a_1, a_2, \ldots, a_m\} = t\{a_1, a_2, \ldots, a_m\}$, where t is a constant satisfying $t^n = 1$; (2) $f(z) = d e^{cz}$, $g(z) = \frac{1}{d} e^{-cz}$, $\{a_1, a_2, \ldots, a_m\} = (-1)^k e^{2kt}\left\{\frac{1}{a_1}, \ldots, \frac{1}{a_m}\right\}$, where t, c, d are nonzero constants and $t^n = 1$.

Definition 2([6]). Let S be a set of distinct elements of $C \cup \{\infty\}$ and k a non-negative integer or ∞. We denote by $E_f(S, k)$ the set $\cup_{a \in S} E_k(a, f)$. Clearly $E_f(S) = E_f(S, \infty)$ and $E_f(S) = E_f(S, 0)$.

With the notion of weighted sharing of sets we prove the following results which improve Theorem B, Theorem C and Theorem D.

Theorem 1. Let $n \geq 5$, k be positive integers, and let $S_1 = \{z : z^n = 1\}$, $S_2 = \{a_1, a_2, \ldots, a_m\}$, where a_1, a_2, \ldots, a_m are distinct nonzero constants. If two nonconstant entire functions f and g satisfy $E_f(S_1, 2) = E_g(S_1, 2)$ and $E_f(S_2, \infty) = E_g(S_2, \infty)$, then one of the following cases must occur: (1) $f = tg$, $\{a_1, a_2, \ldots, a_m\} = t\{a_1, a_2, \ldots, a_m\}$, where t is a constant satisfying $t^n = 1$; (2) $f(z) = d e^{cz}$, $g(z) = \frac{1}{d} e^{-cz}$, $\{a_1, a_2, \ldots, a_m\} = (-1)^k e^{2kt}\left\{\frac{1}{a_1}, \ldots, \frac{1}{a_m}\right\}$, where t, c, d are nonzero constants and $t^n = 1$.

With the notion of weighted sharing of sets we prove the following theorem which also improves Theorem B, Theorem C and Theorem D.

Theorem 4. Let $n \geq 5$, k be positive integers, and let $S_1 = \{z : z^n = 1\}$, $S_2 = \{a_1, a_2, \ldots, a_m\}$, where a_1, a_2, \ldots, a_m are distinct nonzero constants. If two nonconstant entire functions f and g satisfy $E_f(S_1, f) = E_g(S_1, g)$, $E_f(S_2, f) = E_g(S_2, g)$, $E_f(S_1, g)$ and $E_f(S_2, \infty) = E_g(S_2, \infty)$, then one of the following cases must occur: (1) $f = tg$, $\{a_1, a_2, \ldots, a_m\} = t\{a_1, a_2, \ldots, a_m\}$, where t is a con-
stant satisfying \(t^n = 1 \); (2) \(f(z) = de^{cz}, \ g(z) = \frac{t}{d}e^{-cz} \), \(\{a_1, a_2, \cdots, a_m\} = (-1)^k e^{2k t}\{\frac{1}{a_1}, \cdots, \frac{1}{a_m}\} \), where \(t, c, d \) are nonzero constants and \(t^n = 1 \).

2. Some lemmas

In this section, we present some lemmas which will be needed in the sequel. We will denote by \(H \) the following function:

\[
H = \left(\frac{F''}{F'} - \frac{2F'}{F-1} \right) - \left(\frac{G''}{G'} - \frac{2G'}{G-1} \right).
\]

Lemma 1([8]). Let \(f \) be a nonconstant meromorphic function, and let \(a_0, a_1, a_2, \cdots, a_n \) be finite complex numbers, \(a_n \neq 0 \). Then

\[
T(r, a_n f^n + \cdots + a_2 f^2 + a_1 f + a_0) = nT(r, f) + S(r, f).
\]

Lemma 2([7]). Let \(H \) be defined as above. If \(F \) and \(G \) share \((1,2)\) and \(H \not\equiv 0 \), then

\[
T(r, F) \leq N_2(r, \frac{1}{F}) + N_2(r, \frac{1}{G}) + N_2(r, F) + N_2(r, G) + S(r, F) + S(r, G),
\]

the same inequality holds for \(T(r, G) \).

Lemma 3([2]). Let \(H \) be defined as above. If \(F \) and \(G \) share \((1,1)\) and \(H \not\equiv 0 \), then

\[
T(r, F) \leq N_2(r, \frac{1}{F}) + N_2(r, F) + N_2(r, \frac{1}{G}) + N_2(r, G) + \frac{1}{2}N(r, \frac{1}{F}) + \frac{1}{2}N(r, F) + S(r, F) + S(r, G),
\]

the same inequality holds for \(T(r, G) \).

Lemma 4([11]). Let \(H \) be defined as above. If \(H \equiv 0 \) and

\[
\limsup_{r \to \infty} \frac{N(r, \frac{1}{F}) + N(r, \frac{1}{G}) + N(r, F) + N(r, G)}{T(r)} < 1, \ r \in I,
\]

where \(I \) is a set with infinite linear measure and \(T(r) = \max\{T(r, F), T(r, G)\} \), then \(FG \equiv 1 \) or \(F \equiv G \).

Lemma 5([2]). Let \(F, G \) be two nonconstant meromorphic functions such that
they share \((1,0)\), and \(H \neq 0\). Then

\[
T(r, F) \leq N_2(r, \frac{1}{F}) + N_2(r, F) + N_2(r, \frac{1}{G}) + 2N(r, \frac{1}{F}) + 2N(r, F) + N(r, \frac{1}{G}) + N(r, G) + S(r, F) + S(r, G),
\]

the same inequality holds for \(T(r, G)\).

Lemma 6\([1]\). Let \(F, G\) be two nonconstant meromorphic functions such that \(E_4(1, F) = E_4(1, G)\) and \(E_2(1, F) = E_2(1, G)\), then one of the following cases holds
\((1)\)

\[T(r, F) + T(r, G) \leq 2 \{N_2(r, \frac{1}{F}) + N_2(r, \frac{1}{G}) + N_2(r, F) + N_2(r, G)\} + S(r, F) + S(r, G) ; (2) F \equiv G ; (3) FG \equiv 1.\]

Lemma 7\([5]\). Let \(f\) be a nonconstant meromorphic function, \(n\) be a positive integer, and let \(\Psi\) be a function of the form \(\Psi = f^n + Q\), where \(Q\) is a differential polynomial of \(f\) with degree \(\leq n - 1\). If

\[N(r, f) + N\left(\frac{1}{\Psi}\right) = S(r, f),\]

then \(\Psi = (f + \alpha)^n\), where \(\alpha\) is a meromorphic function with \(T(r, \alpha) = S(r, f)\), determined by the term of degree \(n - 1\) in \(Q\).

3. Proof of theorem 1

Set \(F = f^n, G = g^n\). From \(E_f(S_1, 2) = E_g(S_1, 2)\), we deduce \(F\) and \(G\) share \((1, 2)\). By Lemma 1, we have

\((1)\)

\[T(r, F) = nT(r, f) + S(r, f), \quad T(r, G) = nT(r, g) + S(r, g).\]

Assume \(H \neq 0\). By Lemma 2, we have

\((2)\)

\[T(r, F) = nT(r, f) + S(r, f) \leq N_2(r, \frac{1}{F}) + N_2(r, \frac{1}{G}) + S(r, F) + S(r, G) \leq 2T(r, f) + 2T(r, g) + S(r, f) + S(r, g).\]

Similarly, we have

\((3)\)

\[T(r, G) = nT(r, g) + S(r, f) \leq N_2(r, \frac{1}{F}) + N_2(r, \frac{1}{G}) + S(r, F) + S(r, G) \leq 2T(r, f) + 2T(r, g) + S(r, f) + S(r, g).\]

Combining (2) and (3) together we have

\((4)\)

\[(n - 4)T(r, f) + (n - 4)T(r, g) \leq S(r, f) + S(r, g),\]
which contradicts \(n \geq 5 \). Thus \(H \equiv 0 \). By Lemma 4, we have \(FG \equiv 1 \) or \(F \equiv G \), that is \(f = tg \) or \(fg = t \) where \(t \) is a constant and \(t^n = 1 \). Next we consider the following two cases:

Case 1. \(f = tg \). Then \(f^{(k)} = tg^{(k)} \). By \(E_{f^{(k)}}(S_2, \infty) = E_{g^{(k)}}(S_2, \infty) \), we get \(\{a_1, a_2, \cdots, a_m\} = t\{a_1, a_2, \cdots, a_m\} \).

Case 2. \(fg = t \). Then there exists an entire function \(h \) such that \(f = e^h \) and \(g = te^{-h} \). Therefore

\[
\alpha_k = \alpha_1^k + P(\alpha_1), \beta_k = \beta_1^k + Q(\beta_1),
\]

where \(P(\alpha_1) \) is a differential polynomial in \(\alpha_1 \) of degree \(k - 1 \), and \(Q(\beta_1) \) is a differential polynomial in \(\beta_1 \) of degree \(k - 1 \). If \(\alpha_1 \) and \(\beta_1 \) are not constants, then by Lemma 7, we have

\[
\alpha_k = \left(\alpha_1 + \frac{\gamma_1}{k} \right)^k, \beta_k = \left(\beta_1 + \frac{\gamma_2}{k} \right)^k,
\]

where \(\gamma_1, \gamma_2 \) are small functions of \(\alpha_1 \) and \(\beta_1 \), respectively. Note that \(\alpha_1 = -\beta_1 = h' \). We conclude that \(\alpha_k \beta_k \) can not be constant, which is a contradiction. Hence one of \(\alpha_1 \) and \(\beta_1 \) is constant. Thus \(h \) is a linear function. Therefore, \(f(z) = de^{cz} \) and \(g(z) = \frac{t}{d}e^{-cz} \), where \(c, d \) are nonzero constants. Now from \(E_{f^{(k)}}(S_2, \infty) = \ldots \)
Entire Functions and Their Derivatives Share Two Finite Sets

\(E_{g^n}(S_2, \infty) \), we get \(\{a_1, a_2, \ldots, a_m\} = (-1)^k c^{2k} t\{ \frac{1}{a_1}, \ldots, \frac{1}{a_m} \} \), which completes the proof of Theorem 1.

4. Proof of theorem 2

Set \(F = f^n \), \(G = g^n \). From \(E_f(S_1, 1) = E_g(S_1, 1) \), we deduce \(F \) and \(G \) share \((1, 1)\). By Lemma 1, we have

\[
T(r, F) = nT(r, f) + S(r, f), \quad T(r, G) = nT(r, g) + S(r, g).
\]

Assume \(H \neq 0 \). By Lemma 3, we have

\[
T(r, F) = nT(r, f) + S(r, f)
\leq N_2(r, \frac{1}{F}) + N_2(r, \frac{1}{G}) + \frac{1}{2} N(r, \frac{1}{F}) + S(r, F) + S(r, G)
\leq \frac{5}{2} T(r, f) + 2T(r, g) + S(r, f) + S(r, g).
\]

Similarly, we have

\[
T(r, G) = nT(r, g) + S(r, g)
\leq N_2(r, \frac{1}{F}) + N_2(r, \frac{1}{G}) + \frac{1}{2} N(r, \frac{1}{G}) + S(r, F) + S(r, G)
\leq 2T(r, f) + \frac{5}{2} T(r, g) + S(r, f) + S(r, g).
\]

Combining (12) and (13) together we have

\[
(n - \frac{9}{2}) T(r, f) + (n - \frac{9}{2}) T(r, g) \leq S(r, f) + S(r, g),
\]

which contradicts \(n \geq 5 \). Thus \(H \equiv 0 \). By Lemma 4, we have \(FG \equiv 1 \) or \(F \equiv G \), that is \(f = t g \) or \(fg = t \) where \(t \) is a constant and \(t^n = 1 \). Proceeding as in the proof of Theorem 1, we get the conclusion of Theorem 2. This completes the proof of Theorem 2.

5. Proof of theorem 3

Set \(F = f^n \), \(G = g^n \). From \(E_f(S_1, 0) = E_g(S_1, 0) \), we deduce \(F \) and \(G \) share \((1, 0)\). By Lemma 1, we have

\[
T(r, F) = nT(r, f) + S(r, f), \quad T(r, G) = nT(r, g) + S(r, g).
\]
Assume $H \not\equiv 0$. By Lemma 5, we have

\begin{align}
(16) \quad T(r, F) &= nT(r, f) + S(r, f) \\
&\leq N_2(r, \frac{1}{F}) + N_2(r, \frac{1}{G}) + 2\overline{N}(r, \frac{1}{F}) + \overline{N}(r, \frac{1}{G}) + S(r, F) + S(r, G) \\
&\leq 4T(r, f) + 3T(r, g) + S(r, f) + S(r, g).
\end{align}

Similarly, we have

\begin{align}
(17) \quad T(r, G) &= nT(r, g) + S(r, g) \\
&\leq 3T(r, f) + 4T(r, g) + S(r, f) + S(r, g).
\end{align}

Combining (16) and (17) together we have

\begin{align}
(18) \quad (n - 7)T(r, f) + (n - 7)T(r, g) &\leq S(r, f) + S(r, g),
\end{align}

which contradicts $n \geq 8$. Thus $H \equiv 0$. By Lemma 4, we have $FG \equiv 1$ or $F \equiv G$, that is $f = tg$ or $fg = t$ where t is a constant and $t^n = 1$. Proceeding as in the proof of Theorem 1, we get the conclusion of Theorem 3. This completes the proof of Theorem 3.

6. Proof of theorem 4

Set $F = f^n$, $G = g^n$. By Lemma 1, we have

\begin{align}
(19) \quad T(r, F) &= nT(r, f) + S(r, f), \quad T(r, G) = nT(r, g) + S(r, g).
\end{align}

From $\mathcal{E}_4(S_1, f) = \mathcal{E}_4(S_1, g)$, $E_2(S_1, f) = E_2(S_1, g)$, we deduce $\mathcal{E}_4(1, F) = \mathcal{E}_4(1, G)$, $E_2(1, F) = E_2(1, G)$. Then F and G satisfy the condition of Lemma 6.

We assume Case (1) in Lemma 6 holds, that is,

\begin{align}
(20) \quad T(r, F) + T(r, G) &\leq 2\{N_2(r, \frac{1}{F}) + N_2(r, \frac{1}{G})\} + S(r, F) + S(r, G) \\
&\leq 4T(r, f) + 4T(r, g) + S(r, f) + S(r, g).
\end{align}

Combining (19) and (20) together we have

\begin{align}
(21) \quad (n - 4)T(r, f) + (n - 4)T(r, g) &\leq S(r, f) + S(r, g),
\end{align}

which contradicts $n \geq 5$. Thus by Lemma 6, we get $F \equiv G$ or $FG \equiv 1$, that is, $f = tg$ or $fg = t$ where t is a constant and $t^n = 1$. Proceeding as in the proof of Theorem 1, we get the conclusion of Theorem 4. This completes the proof of Theorem 4.
Entire Functions and Their Derivatives Share Two Finite Sets

References

