The Signless Laplacian Spectral Radius for Bicyclic Graphs
with k Pendant Vertices

Lihua Feng
School of Mathematics, Shandong Institute of Business and Technology, 191 Bin-
haizhong Road, Yantai, Shandong 264005, P. R. China

e-mail: fenglh@163.com

Abstract. In this paper, we study the signless Laplacian spectral radius of bicyclic graphs
with given number of pendant vertices and characterize the extremal graphs.

1. Introduction

Let $G = (V, E)$ be a simple connected graph with vertex set $V = \{v_1, v_2, \cdots, v_n\}$
and edge set E. The order of a graph is the cardinality of its vertex set. The matrix
$Q(G) = D(G) + A(G)$ is called the signless Laplacian matrix of graph G, where
$D(G) = diag(d_v, v \in V)$ is the diagonal matrix of vertex degrees of G and $A(G)$ is
the adjacency matrix of G. It is known that $Q(G)$ is a positive semi-definite matrix,
we call this matrix the Q-matrix and its largest eigenvalue is denoted by $\mu(G)$ or μ
for simplicity. For the background on the Laplacian eigenvalues of a graph, the
reader is referred to [20] and the references therein.

It is well known that the matrix $L(G) = D(G) - A(G)$ is called the Laplacian
matrix, and $\lambda(G) \leq \mu(G)$ (see, for example, [14]), the equality holds if and only if
G is bipartite.

A bicyclic graph is a connected graph with vertex number equal to edge number
minus one. A pendant path in a connected graph is a path attached to a connected
graph. For $S \subset V$, $G[S]$ denotes the subgraph induced by S. For $u \in V$, d_u is the
degree of u, $N(u)$ is the neighbor set of u.

Denote by C_n and P_n the cycle and the path on n vertices, respectively. We
will use $B_n(k)$ to denote the set of bicyclic graphs on n vertices with k pendant
vertices. Let C_p and C_q be two vertex disjoint cycles. Suppose that v_1 is a vertex
of C_p and v_t is a vertex of C_q. Joining v_1 and v_t by a path $v_1 v_2 \cdots v_t$ of length
$t-1$, where $t \geq 1$ and $t = 1$ means identifying v_1 with v_t, the resulting graph, denoted by
$B(p, t, q)$. The set of bicyclic graphs obtained from $B(p, t, q)$ by attaching trees is
denoted by $B^+_n(k)$. Let P_{t+1}, P_{p+1} and P_{q+1} be three vertex-disjoint paths, where
t, $p, q \geq 1$ and at most one of them is 1. Identifying the three initial vertices and

Received August 3, 2009; revised September 30, 2009; accepted October 9, 2009.
2000 Mathematics Subject Classification: 05C50, 15A18.
Key words and phrases: Bicyclic graph; signless Laplacian; spectral radius; pendant vertex.
This paper was supported Foundation of Education Committee of Shandong Province
(J07YH03) and NSFSD(No. Y2008A04).

109
terminal vertices of them, respectively, the resulting graph is denoted by $P(t, p, q)$. The set of bicyclic graphs obtained from $P(t, p, q)$ by attaching trees is denoted by $B_n^{t, p, q}$. Obviously, $B_n^k = B_n^k(k) \cup B_n^{k+}(k)$. For other notations in graph theory, we follow [1].

The Laplacian spectral radius of unicyclic graphs is well studied. In [17], the upper and lower bounds for Laplacian spectral radius of unicyclic graphs were studied. In [13], the author characterized the maximum Laplacian spectral radius of unicyclic graphs with given number of pendant vertices. We also characterize the extremal graphs.

2. Some lemmas

Lemma 2.1([19]). Let G be a connected graph and u, v be two vertices of G. Suppose $v_1, v_2, \ldots, v_s \in N(v) \setminus (N(u) \cup \{u\})$ (1 ≤ $s \leq d_v$), and G^* is the graph obtained from G by deleting the edges uv_i and adding the edges uv_i (1 ≤ $i \leq s$). Let $X = (x_1, x_2, \ldots, x_n)^t$ be the principal eigenvector of $Q(G)$, where x_i corresponds to v_i (1 ≤ $i \leq n$). If $x_u = x_v$, then $\mu(G) < \mu(G^*)$.

We generalize Lemma 2.1 next.

Lemma 2.2. Let G be a connected graph of order n and S, T be its two disjoint nonempty vertex subset. Suppose $S = \{v_1, v_2, \ldots, v_s\}$ and the neighbors of v_i in T are $v_{i1}, v_{i2}, \ldots, v_{il_i}$ ($l_i \geq 1$, $i = 1, 2, \ldots, s$). Let $X = (x_{v_1}, x_{v_2}, \ldots, x_{v_s})^t$ be the Perron vector of $Q(G)$, where x_{v_k} corresponds to the vertex v_k (1 ≤ $k \leq n$). Suppose $x_{v_i} = \max\{x_{v_k} : i = 1, 2, \ldots, s\}$. Let H be the graph obtained from G by deleting edges v_{ij} and adding the edges v_{ij} (i = 2, 3, \ldots, s; j = 1, 2, \ldots, l_i). Then we have $\mu(G) < \mu(H)$.

Proof. The proof is similar to that in [11], we present it here for completeness. Obviously,

$$X^t(Q(H) - Q(G))X = X^t(D(H) + A(H) - D(G) - A(G))X$$

$$= \sum_{i=2}^s \sum_{j=1}^{l_i} \left((x_{v_i} + x_{v_{ij}})^2 - (x_{v_i} + x_{v_{ij}})^2 \right)$$
Thus, the sequence of vertices v and an additional vertex. We call the following two types of paths internal paths subdividing the edge uv internal path of G. Let Lemma 2.3([8], [2]).

Proof. The proof of the result is similar to Theorem 4.11 in [14] and we omit it. □

Lemma 2.5([2]). Suppose G is a nontrivial simple connected graph. Let u be a
Lemma 2.6. Let G be a connected graph and P be a pendant path in G. Suppose e is an edge in P and G' is the graph obtained from G by subdividing e, then we have $\mu(G) < \mu(G')$.

Proof. Since G is a proper subgraph of G', we have $\mu(G) < \mu(G')$. \hfill \Box

3. Main results

Suppose the vertices of the graphs $B(4, 1, 4), B(4, 1, 3), B(3, 1, 3)$ are labeled as in Fig. 1.

Let B_1 be the graph on n vertices obtained from $B(4, 1, 4)$ by attaching k paths of almost equal lengths at u_6; B_2 be the graph obtained from $B(4, 1, 4)$ by attaching k paths of almost equal lengths at u_4; B_3 be the graph obtained from $B(4, 1, 4)$ by attaching k paths of almost equal lengths at u_5. Let C_1 be the graph on n vertices obtained from $B(4, 1, 3)$ by attaching k paths of almost equal lengths at u_5; C_2 be the graph obtained from $B(4, 1, 3)$ by attaching k paths of almost equal lengths at u_2. Let C_3 be the graph obtained from $B(4, 1, 3)$ by attaching k paths of almost equal lengths at u_1; C_4 be the graph obtained from $B(4, 1, 3)$ by attaching k paths of almost equal lengths at u_4.

Let D_1 be the graph on n vertices obtained from $B(3, 1, 3)$ by attaching k paths of almost equal lengths at u_4; D_2 be the graph on n vertices obtained from $B(3, 1, 3)$ by attaching k paths of almost equal lengths at u_2.

Theorem 3.1. Let G be a bicyclic graph in $\mathcal{B}_1^+(k)$. Then $\mu(G) \leq \mu(D_1)$. The equality holds if and only if $G \cong D_1$.

Proof. Let G be a bicyclic graph in $\mathcal{B}_1^+(k)$. Comparing the eigencomponents of the vertices on $B(p, l, q)$, by Lemma 2.2, identifying the roots of the trees attached
to \(B(p, l, q) \), the signless Laplacian spectral radius increases. Next, by Lemmas 2.3, 2.4, contracting the internal path and Lemma 2.5 to make all the pendant paths having almost equal lengths, the signless Laplacian spectral radius again increases. At last, subdividing the pendant paths several times if necessary to keep the order of graphs unchanged, by Lemma 2.6, \(\mu(G) \) increases.

So we conclude the following three cases hold.

1. If \(p \geq q \geq 4 \) and \(l \geq 1 \), then \(\mu(G) \leq \max \{ \mu(B_1), \mu(B_2), \mu(B_3) \} \).
2. If \(p = 4, q = 3 \) and \(l \geq 1 \), then \(\mu(G) \leq \max \{ \mu(C_1), \mu(C_2), \mu(C_3), \mu(C_4) \} \).
3. If \(p = q = 3, l \geq 1 \), then \(\mu(G) \leq \max \{ \mu(D_1), \mu(D_2) \} \).

For case (1), we claim that \(\max \{ \mu(B_1), \mu(B_2), \mu(B_3) \} = \mu(B_1) \).

In fact, for \(B_2 \), consider the eigencomponents corresponding to \(u \) and \(u_4 \), say, \(x_u \) and \(x_{u_4} \). If \(x_u \geq x_{u_4} \), by Lemma 2.1, removing the \(k \) pendant paths to \(u \), we have \(\mu(B_2) < \mu(B_1) \). If \(x_u < x_{u_4} \), by Lemma 2.1, deleting edges \(uu_1, uu_2 \) and adding edges \(u_4u_1, u_4u_2 \), we also have \(\mu(B_2) < \mu(B_1) \). Similarly, for \(B_3 \), consider the eigencomponents corresponding to \(u \) and \(u_6 \), we have \(\mu(B_3) < \mu(B_1) \).

For case (2), we claim that \(\max \{ \mu(C_1), \mu(C_2), \mu(C_3), \mu(C_4) \} = \mu(C_1) \).

In fact, for \(C_2 \), consider the eigencomponents corresponding to \(u \) and \(u_2 \), say, \(x_u \) and \(x_{u_2} \). If \(x_u \geq x_{u_2} \), by Lemma 2.1, removing the \(k \) pendant paths to \(u \), we have \(\mu(C_2) < \mu(C_1) \). If \(x_u < x_{u_2} \), by Lemma 2.1, deleting edges \(uu_3, uu_4 \) and adding edges \(u_2u_3, u_2u_4 \), we also have \(\mu(C_2) < \mu(C_1) \). Similarly, for \(C_3 \), consider the eigencomponents corresponding to \(u \) and \(u_6 \), we have \(\mu(C_3) < \mu(C_1) \); for \(C_4 \), consider the eigencomponents corresponding to \(u \) and \(u_4 \), we have \(\mu(C_4) < \mu(C_1) \).

For case (3), we claim that \(\max \{ \mu(D_1), \mu(D_2) \} = \mu(D_1) \).

This is similar to the above two cases.

At last, we claim that \(\max \{ \mu(B_1), \mu(C_1), \mu(D_1) \} = \mu(D_1) \).

In fact, for \(C_1 \), by Lemma 2.3, contracting edge \(u_1u_5 \) and by Lemma 2.6, subdividing the pendant edge one time, by Lemma 2.5, we get the graph \(D_1 \) and \(\mu(C_1) \) < \(\mu(D_1) \).

For \(B_1 \), contracting edge \(u_1u_5, u_3u_6 \) and by Lemma 2.6, subdividing the pendant edge one time, by Lemma 2.5, we get the graph \(D_1 \) and \(\mu(B_1) \) < \(\mu(D_1) \).

Suppose the vertices of the graphs \(P(3, 1, 3), P(3, 1, 2), P(2, 1, 2) \) are labeled as in Fig. 2.

Let \(E_1 \) be the graph obtained from \(P(2, 1, 2) \) by attaching \(k \) paths of almost equal lengths at \(u_3 \); \(E_2 \) be the graph obtained from \(P(2, 1, 2) \) by attaching \(k \) paths of almost equal lengths at \(u_4 \).

Let \(F_1 \) be the graph on \(n \) vertices obtained from \(P(3, 1, 2) \) by attaching \(k \) paths of almost equal lengths at \(u_3 \); \(F_2 \) be the graph on \(n \) vertices obtained from \(P(3, 1, 2) \) by attaching \(k \) paths of almost equal lengths at \(u_4 \); \(F_3 \) be the graph obtained from \(P(3, 1, 2) \) by attaching \(k \) paths of almost equal lengths at \(u_3 \).

Let \(G_1 \) be the graph on \(n \) vertices obtained from \(P(3, 1, 3) \) by attaching \(k \) paths of almost equal lengths at \(u_4 \); \(G_2 \) be the graph on \(n \) vertices obtained from \(P(3, 1, 3) \) by attaching \(k \) paths of almost equal lengths at \(u_3 \).
Theorem 3.2. Let G be a bicyclic graph in $\mathcal{B}_n^+(k)$. Then $\mu(G) \leq \mu(E_1)$. The equality holds if and only if $G \cong E_1$.

Proof. Similar as in Theorem 3.1, we conclude that the following three cases holds.

1. If $p = l = 2$ and $q = 1$, then $\mu(G) \leq \max\{\mu(F_1), \mu(F_2)\}$.
2. If $p = 3$, $l = 2$ and $q = 1$ or 2, then $\mu(G) \leq \max\{\mu(F_1), \mu(F_2), \mu(F_3)\}$.
3. If $p \geq l \geq 3$, $q \geq 1$, then $\mu(G) \leq \max\{\mu(G_1), \mu(G_2)\}$.

For case (1), we claim that $\max\{\mu(E_1), \mu(E_2)\} = \mu(E_1)$.

In fact, in E_2, just consider the eigencomponents of u_3 and u_4, by Lemma 2.1, we can get the claim.

For case (2), we claim that $\max\{\mu(F_1), \mu(F_2), \mu(F_3)\} = \mu(F_2)$.

In fact, in F_1, just consider the eigencomponents of u_3 and u_1, by Lemma 2.1, we get $\mu(F_1) \leq \mu(F_2)$; in F_3, consider the eigencomponents of u_1 and u_5, by Lemma 2.1, we get $\mu(F_3) \leq \mu(F_2)$, as claimed.

For case (3), we claim that $\max\{\mu(G_1), \mu(G_2)\} = \mu(G_1)$.

In fact, in G_2, just consider the eigencomponents of u_3 and u_1, by Lemma 2.1, we can get the claim.

At last, we claim that $\max\{\mu(E_1), \mu(F_2), \mu(G_1)\} = \mu(E_1)$.

In fact, for F_2, by Lemma 2.3, contracting edge u_2u_3 and by Lemma 2.6, subdividing the pendant edge one time, by Lemma 2.5, we get the graph E_1 and $\mu(F_2) < \mu(E_1)$.

For G_1, contracting edge u_2v_3, u_3u_6 and by Lemma 2.6, subdividing the pendant edge one time, by Lemma 2.5, we get the graph E_1 and $\mu(G_1) < \mu(E_1)$. \square

Lemma 3.3([4]). Let G be a graph on n vertices with at least one edge and the maximum degree of G be Δ. Then $\mu(G) \geq \Delta + 1$. The equality holds if and only if G is a star.

Lemma 3.4([9]). For a connected graph G, we have $\mu(G) \leq \max\{d_u + m_u : u \in V(G)\}$, where m_u satisfies $d_u m_u = \sum_{v \in E(G)} d_v$. The equality holds if and only if G is regular or semiregular bipartite.

Theorem 3.5. Let G be a bicyclic graph in $\mathcal{B}_n(k)$. Then $\mu(G) \leq \mu(D_1)$, the equality holds if and only if $G = D_1$.

Proof. By Theorems 3.1, 3.2, we have $\mu(G) \leq \max\{\mu(D_1), \mu(E_1)\}$. For D_1, by Lemma 3.3, we have $\mu(D_1) \geq k + 5$. By Lemma 3.4, $\mu(E_1) < k + 5$. This implies
the result.

Acknowledgment. The author is grateful to the referee for his or her valuable suggestions which lead to an improvement of this paper.

References

