On Rings Containing a Non-essential $nil-$Injective Maximal Left Ideal

JUNCHAO WEI* AND YINCHUN QU
School of Mathematics, Yangzhou University, Yangzhou, 225002, P. R. China
e-mail: jcweiyz@yahoo.com.cn and quyc@wxit.edu.cn

Abstract. We investigate in this paper rings containing a non-essential $nil-$injective maximal left ideal. We show that if R is a left MC^2 ring containing a non-essential $nil-$injective maximal left ideal, then R is a left $nil-$injective ring. Using this result, some known results are extended.

1. Introduction

Throughout this paper, R denotes an associative ring with identity and all modules are unitary. For any nonempty subset X of a ring R, $r(X) = r_0(X)$ and $l(X) = l_0(X)$ denote the right annihilators of X and the left annihilators of X, respectively. We write $J(R)$, $P(R)$, $Z_l(R)$ ($Z_r(R)$), $N(R)$, $U(R)$, $E(R)$, $Soc(R)$ and $Soc(R)$ for the Jacobson radical, the prime radical, the left (right) singular ideal, the set of all nilpotent elements, the set of all invertible elements, the set of all idempotent elements, the left socle and the right socle of R, respectively. It is well-known that every maximal left ideal of a ring R is injective if and only if R is semisimple Artinian. Osofsky [8] showed that if R is a left self-injective left hereditary ring, then R is semisimple Artinian. Based on these results, Yue chiming [19] proposed the following question: If R is a left hereditary ring containing an injective maximal left ideal, is R semisimple Artinian? However, Zhang and Du [20] constructed a counterexample to settle in the negative, and then they proved that a ring R is semiprime left hereditary containing an injective maximal left ideal if and only if R is semisimple Artinian. As the same direction to Zhang and Du, Kim [4] showed that if R is a semiprime ring containing a finitely generated $p-$injective maximal left ideal, then R is a left $p-$injective ring. And Kim and Baik [3] showed that If R is a left idempotent reflexive ring containing an injective maximal left ideal

* Corresponding Author.
Received September 25, 2010; accepted November 16, 2010.
2010 Mathematics Subject Classification: 16A30, 16A50, 16E50, 16D50.
Key words and phrases: Left MC^2 rings, Left $nil-$rings, $n-$regular rings, Reduced rings, $nil-$injective maximal left ideals.
Project supported by the Foundation of Natural Science of China (11171291, 10791182), the Scientific Research Foundation of Graduate School of Jiangsu Province (CX09B_309Z) and Natural science fund for colleges and universities in Jiangsu Province(11KJB110019).
ideal, then R is a left self-injective.

We investigate in this paper rings containing a non-essential nil- injective maximal left ideal. Using left MC2 rings, we show that if R is a left MC2 ring containing a non-essential nil- injective maximal left ideal, then R is a left nil- injective ring. As a byproduct of this result, we obtain a new characterization of regular left self-injective rings with nonzero socle. This characterization is then used to prove that left MC2 left Hilbert rings are semisimple Artinian. Consequently we extend nontrivially some results appeared in [3], [4] and [20].

An element k of R is called left minimal if Rk is a minimal left ideal of R. An element e of R is called left minimal idempotent if $e^2 = e$ is left minimal. Similarly, the notion of right minimal (idempotent) element can be defined. We denote $M_l(R)$, $ME_l(R)$, $M_r(R)$ and $ME_r(R)$ for the set of left minimal elements, the set of left minimal idempotent elements, the set of right minimal elements and the set of right minimal idempotent elements of R, respectively. A ring R is called left MC2 if every minimal left ideal which is isomorphic to a summand of R is a summand. Left MC2 rings were initiated by Nicholson and Yousif in [6], related to the left mininjective rings. Where a ring R is called left mininjective if $rl(k) = kR$ for every $k \in M_l(R)$. A ring R is said to be left minsymmetric [6] if $M_l(R) \subseteq M_r(R)$, and R is left universally mininjective [6] if for any $k \in M_l(R)$, Rk is a summand of kR. According to [6], left universally mininjective \implies left mininjective \implies left minsymmetric \implies left MC2 and the converse are not true.

A ring R is called left min-abel [12] if for each $e \in ME_l(R)$, e is left semicentral in R, and R is said to be strongly left min-abel [12] if every element of $ME_l(R)$ is contained in the central of R. [12, Theorem 1.8] showed that R is strongly left min-abel if and only if R is left MC2 left min-abel.

A ring R is called reflexive [5] if $aRb = 0$ implies $bRa = 0$ for all $a, b \in R$, and R is said to be left idempotent reflexive [3] if $aRe = 0$ implies $eRa = 0$ for all $a \in R$ and $e \in E(R)$. Clearly, semiprime \implies reflexive \implies left idempotent reflexive \implies left MC2. But the converse are not true.

R is called reduced if it contains no nonzero nilpotent element. Clearly, reduced \implies semiprime \implies left universally mininjective.

Recall that a ring R is left NPP [14] if for any $a \in N(R)$, RRA is projective, and R is said to be n-regular if $a \in aR$ for all $a \in N(R)$. A left R-module M is called left nil-injective [14] if for any $a \in N(R)$ and every left R-homomorphism from Ra to M extends to one from R to M. If R is nil-injective, then R is called left nil-injective ring. According to [14] R is a n-regular ring if and only if every cyclic left R-module is nil-injective if and only if R is a left nil-injective left NPP ring.

2. Main results

We start with the following lemma.

Lemma 2.1. (1) The following conditions are equivalent for a left R-module M:
Hence R is central, and M is injective. \cite[Theorem 4.7]{15} showed that R is a nil-injective maximal left ideal, then $V = Rv$ is injective if and only if $M_1 \oplus M_2$ is nil-injective.

Proof. It is routine.

Lemma 2.2. Let R be a ring and $e \in ME_2(R)$. If e is central in R, then Re is injective.

Proof. Let $e \in ME_2(R)$ be contained in the central of R and I be a left ideal of R that I is a non-zero R-homomorphism $f : I \to Re$. Since Re is projective, $I = kerf \oplus V$, where $V \cong Re$. Let σ be the isomorphism and let $0 \neq v \in V$ such that $\sigma(v) = e$, then $V = Ru$ and $v = ev$. Since e is central in R, $v = ev = ve$, which implies $Re = Ru = V$. Therefore $I = kerf \oplus Re$. Now for any $x \in I$, let $x = y + z$, where $y \in kerf$ and $z = xe \in Re$. Since $yf(e) = f(ve) = f(ye) = ef(y) = 0$, $f(x) = f(y) + f(z) = f(z) = yf(e) = yf(e) + zf(e) = (y + z)f(e) = xf(e)$. Hence Re is injective. \hfill \Box

\cite[Proposition 5]{3} showed that if R is a left idempotent reflexive ring containing an injective maximal left ideal, then R is a left self-injective ring. \cite[Theorem 2]{4} showed that if R is a semiprime ring containing a finitely generated p-injective maximal left ideal, then R is a left p-injective ring. We have the following theorem.

Theorem 2.3. Let R be a left $MC2$ ring. If R contains a non-essential nil-injective maximal left ideal M, then R is a left nil-injective ring.

Proof. Let M be a non-essential nil-injective maximal left ideal of R. Then $R = M \oplus L$, where $L = Re$ is a minimal left ideal of R and $M = R(1 - e)$. If $ML = 0$, then $M = l(L)$ since M is maximal. So M is an ideal of R. Since R is left $MC2$ and $(1 - e)Re = ML = 0$, by \cite[Theorem 1.3]{13}, $eR(1 - e) = 0$. Hence e is a central idempotent of R. By Lemma 2.2, Re is injective. Now suppose that $ML \neq 0$. Then there exists $u \in L$ such that $Mu \neq 0$, whence $L = Mu$. Let $f : M \to L$ be the map defined by $f(x) = xu$ for each $x \in M$. Since f is an epimorphism and RRe is projective, $M \cong kerf \oplus L$. Hence, by Lemma 2.1(2), RRe is injective. In any case, RRe is nil-injective. By \cite[Theorem 2.1(2)]{21}, RRe is nil-injective. \hfill \Box

According to \cite{15}, a ring R is called n-regular if for any $a \in N(R)$, $a = aba$ for some $b \in R$ and a right R-module M is said to be N-flat if for any $a \in N(R)$, the map $1_M \otimes i : M \otimes_R Ra \to M \otimes_R R$ is monic, where $i : Ra \to R$ is the inclusion map. \cite[Theorem 4.7]{15} showed that R is n-regular if and only if every cyclic right R-module is N-flat. R is said to be abelian if every idempotent element of R is central, and R is said to be semiabelian \cite{21} if every idempotent element of R is
either left semicentral or right semicentral. A ring \(R \) is called quasi-normal [16] if for any \(e \in E(R) \), \(eRe(1-e)Re = 0 \). A ring \(R \) is called left min-abel if every element of \(ME_1(R) \) is left semicentral. [16, Theorem 2.5] showed that quasi-normal rings are left min-abel. [16, Theorem 2.6] showed that \(R \) is abelian if and only if \(R \) is quasi-normal left idempotent reflexive. Clearly, \(\text{abelian} \implies \text{semiabelian} \implies \text{quasi-normal} \).

Theorem 2.4. (1) A ring \(R \) is \(n^- \) regular if and only if every cyclic singular right \(R^- \) module is \(N\text{flat} \).

(2) The following conditions are equivalent for a ring \(R \).

(a) \(R \) is reduced.

(b) \(R \) is \(n^- \) regular and quasi-normal.

(c) \(R \) is left \(N\text{FP} \) and for any \(a \in R \), \(al(a) = 0 \).

(3) Let \(M \) be a maximal left ideal of \(R \) which is also an ideal. Then \(R/M \) is \(N\text{flat} \) as right \(R^- \) module if and only if \(R/M \) is \(n^- \) injective as left \(R^- \) module.

Proof. (1) The necessity is evident by [15, Theorem 4.7].

The sufficiency part: Let \(a \in N(R) \) and \(T \) be a complement right ideal such that \(aR \oplus T \) is essential in \(R \). Then \(R/(aR \oplus T) \) is \(N\text{flat} \) by hypothesis. Since \(a \in N(R) \) and \(a \in aR \oplus T \), \(a = (ac + t)a \) for some \(c \in R \) and \(t \in T \) by [15, Theorem 4.6]. Since \(ta = a - aca \in T \cap aR = 0, a = aca \). Hence \(R \) is \(n^- \) regular.

(2) \((a) \implies (b) \) and \((a) \implies (c) \) are trivial.

(b) \(\implies (a) \) Let \(a \in R \) such that \(a^2 = 0 \). Then \(a = aba \) for some \(b \in R \). Let \(e = ba \), then \(e \in E(R) \), \(a = ac, ca = 0 \) and \(Ra = Re \). Therefore \(eRe = eRa = eR(1-e)ac \subseteq eR(1-e)Re \). Since \(R \) is quasi-normal, \(eR(1-e)Re = 0 \), which implies \(eRe = 0 \). Hence \(e = 0 \) and so \(a = 0 \).

(c) \(\implies (a) \) Let \(a \in R \) with \(a^2 = 0 \). Since \(R \) is left \(N\text{PP} \), \(l(a) = Re \) for some \(e \in E(R) \). Hence \(a = ae \in aRe \) because \(a \in l(a) \). By hypothesis, \(aRe = al(a) = 0 \), which implies \(a = 0 \).

(3) Assume that \(R/M \) is \(N\text{flat} \) right \(R^- \) module and \(a \in N(R) \) with a nonzero \(R^- \) homomorphism \(f : Ra

\longrightarrow R/M \). If \(a \in M \), then by [15, Theorem 4.6], \(a = ma \) for some \(m \in M \). Hence \(f(a) = f(ma) = mf(a) = 0 \) because \(M \) is an ideal of \(R \). This is impossible because \(f \neq 0 \). So \(a \notin M \), which implies \(Ra + M = R \). Since \(R/M \) is division ring, \(Ra + M = R \). Let \(ab + m = 1 \) for some \(b \in R \) and \(m \in M \). Hence \(abf(a) = (1-m)f(a) = f(a) - mf(a) = f(a) \) because \(mf(a) = 0 \). This shows that \(R/M \) is \(n^- \) injective left \(R^- \) module.

Conversely, assume that \(R/M \) is \(n^- \) injective left \(R^- \) module and \(a \in N(R) \). Then \(Ma \subseteq M \cap Ra \). Now let \(x = ca \in M \cap Ra \) where \(c \in R \). If \(l(a) \notin M \), then \(l(a) + M = R \). Let \(1 = y + m \), where \(y \in l(a) \) and \(m \in M \). So \(a = ma \) and \(x = ca = cma \in Ma \). If \(l(a) \subseteq M \), then the left \(R^- \) homomorphism \(f : Ra

\longrightarrow R/M \) defined by \(f(ra) = r + M, r \in R \) can be extended to \(R

\longrightarrow R/M \). which implies there exists \(b \in R \) such that \(1 - ab \in M \). Since \(cab = xb \in M, c = c - cab + cab = c(1 - ab) + cab \in M \). Therefore \(x = ca \in Ma \). In any case, we obtain \(M \cap Ra = Ma \). By [15, Theorem 4.6], \(R/M \) is \(N\text{flat} \) right \(R^- \) module. \(\square \)
As an application of Theorem 2.3, we have the following result.

Theorem 2.5. The following conditions are equivalent for a ring R:

1. R is a n–regular ring with nonzero left socle.
2. R is a left MC2 left NPP ring containing a non-essential nil–injective maximal left ideal.
3. R is a left idempotent reflexive left NPP ring containing a non-essential nil–injective maximal left ideal.
4. R is a reflexive left NPP ring containing a non-essential nil–injective maximal left ideal.
5. R is a semiprime left NPP ring containing a non-essential nil–injective maximal left ideal.
6. R is a left universally mininjective left NPP ring containing a non-essential nil–injective maximal left ideal.
7. R is a left mininjective left NPP ring containing a non-essential nil–injective maximal left ideal.
8. R is a left minsymmetric left NPP ring containing a non-essential nil–injective maximal left ideal.
9. R is a left mininjective left NPP ring containing a non-essential nil–injective maximal left ideal.
10. R is a left NPP ring containing a non-essential nil–injective maximal left ideal which is n–regular.

Proof. (5) \implies (4) \implies (3) \implies (2); (5) \implies (6) \implies (7) \implies (8) \implies (9) and (1) \implies (10) are trivial.

(9) \implies (2) Let $k \in PM_{R}(R)$. Then $l(k) = l(e)$ for some $e \in ME_{R}(R)$. If $(Rk)^{2} = 0$, then $RkR \subseteq l(k)$.

(1) \implies (5) Suppose that R is a n–regular ring with nonzero left socle. By [14, Theorem 2.18], R is a semiprime left NPP ring. Since $Soc(R)R \neq 0$, there exists $k \in M_{R}(R)$. If $k^{2} \neq 0$, then $(Rk)^{2} \neq 0$, hence $Rk = Re, e \in ME_{R}(R)$. If $k^{2} = 0$, $k = kbb$ for some $b \in R$ because R is a n–regular ring. Hence $Rk = Re$, where $e = kbb \in ME_{R}(R)$. In any case, we have $R(1 - e)$ is a non-essential nil–injective maximal left ideal of R by [14, Theorem 2.18].

(10) \implies (1) Let M be a non-essential nil–injective maximal left ideal which is n–regular. Then $R = M \oplus R(1 - e)$ for some $e \in ME_{R}(R)$. So $M = Re$ and R has a nonzero socle because $R(1 - e)$ is minimal left ideal of R.

If $eR(1 - e) = 0$, then $M = l(R(1 - e))$ is an ideal of R. Now we show that $(1 - e)Re = 0$. Otherwise there exists $a \in R$ such that $h = ae - eae \neq 0$. Clearly, $he = hch = 0, h^{2} = 0$ and $h \in M$. Since M is n–regular, there exists $e \in R$ such that $h = hch$. Since $eR(1 - e) = 0$, $hch = hce(1 - e)h = 0$, so $h = 0$ which
is a contradiction. Hence \((1 - e)Re = 0\), which implies \(e\) is central. Now for any
\(u \in N(R)\), since \(M\) is an ideal of \(R\), \(Mu \subseteq M \cap Ru\). Let \(x \in M \cap Ru\), then
\(x = du\) for some \(d \in R\). Since \(x = xe\), \(x = xe = due = deu \in Mu\), which implies that
\(M \cap Ru \subseteq Mu\). Hence \(M \cap Ru = Mu\), by [15, Theorem 4.6], \(R/M\) is \(N\) flat right \(R\)–module. By Theorem 2.4(3), \(R/M\) is left \(nil\)–injective left \(R\)–module, which
implies \(R(1 - e)\) is \(nil\)–injective left \(R\)–module. If \(eR(1 - e) \neq 0\), then by the same
method in the proof of Theorem 2.3, \(R(1 - e)\) is also \(nil\)–injective. Therefore \(R\) is
left \(nil\)–injective and hence \(R\) is \(n\)–regular.

The following example shows that the condition: \("R\) is left \(MC\)2 is not super-
uous in Theorem 2.5.

Let \(Z_2\) be the ring of integers modulo 2. We consider the ring
\(R = \begin{pmatrix} Z_2 & 0 \\ Z_2 & Z_2 \end{pmatrix}\). Then
\(M = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\) is a non-essential maximal left ideal of \(R\) which is \(nil\)–injective
by [20, Theorem 3]. Since \(R\) is a left quasi-duo ring, \(R\) is left min-abel ring by [12,
Theorem 1.2]. However \(R\) is not \(n\)–regular. Moreover, \(R\) is not left \(nil\)– injective.
For, if \(R\) is left \(nil\)–injective, then \(R\) is \(n\)–regular by [14, Theorem 2.18], which
is a contradiction.

This example also implies that there exists a left \(NPP\) ring containing a non-
essential \(nil\)–injective maximal left ideal which is not \(n\)–regular.

Checking carefully the proof of theorem 2.3, we can obtain the following corollaries which generalize [20, Theorem 8] and [4, Theorem 2].

Corollary 2.6. Let \(R\) be a left \(MC\)2 ring. If \(R\) contains an injective maximal left
ideal \(M\), then \(R\) is a left self-injective ring.

Corollary 2.7. Let \(R\) be a left \(MC\)2 ring. If \(R\) contains a finitely generated
\(p\)–injective maximal left ideal \(M\), then \(R\) is a left \(p\)–injective ring.

According to [20], a ring \(R\) is called left \(HI\)–ring if \(R\) is a left hereditary ring
containing an injective maximal left ideal. Wei [11, Theorem 5.1] showed that \(R\)
is a left \(MC\)2 ring if and only if \(\text{Soc}(R) \cap J(R) = \text{Soc}(R) \cap Z_2(R)\) and Osofsky
[8] showed that if \(R\) is a left self-injective left hereditary ring, then \(R\) is semisimple
Artinian. Hence by Corollary 2.6, we have the following Theorem.

Theorem 2.8. The following conditions are equivalent for a ring \(R\):

1. \(R\) is a semisimple Artinian ring.
2. \(R\) is a semiprime left \(HI\)–ring.
3. \(R\) is a reflexive left \(HI\)–ring.
4. \(R\) is a left idempotent reflexive left \(HI\)–ring.
5. \(R\) is a left \(MC\)2 left \(HI\)–ring.
6. \(R\) is a left universally mininjective left \(HI\)–ring.
7. \(R\) is a left mininjective left \(HI\)–ring.
R is a left C2 ring [7] if any left ideal \(I \) is isomorphic to a summand of \(R \) then \(I \) is a summand. It is well known that \(R \) is a von Neumann regular ring if and only if \(R \) is a left \(pp \) left C2 ring. Since von Neumann regular rings and left \(p \)-injective rings are left C2 and left C2 rings are left \(MC2 \). Hence by Corollary 2.7, we have the following theorem which generalizes [4, Theorem 3].

Theorem 2.9. The following conditions are equivalent for a ring \(R \):

1. \(R \) is a von Neumann regular ring with nonzero socle.
2. \(R \) is a left \(MC2 \) left \(pp \) ring containing a finitely generated \(p \)-injective maximal left ideal.
3. \(R \) is a left idempotent reflexive left \(pp \) ring containing a finitely generated \(p \)-injective maximal left ideal.
4. \(R \) is a reflexive left \(pp \) ring containing a finitely generated \(p \)-injective maximal left ideal.
5. \(R \) is a semiprime left \(pp \) ring containing a finitely generated \(p \)-injective maximal left ideal.
6. \(R \) is a left universally mininjective left \(pp \) ring containing a finitely generated \(p \)-injective maximal left ideal.
7. \(R \) is a left mininjective left \(pp \) ring containing a finitely generated \(p \)-injective maximal left ideal.
8. \(R \) is a left minsymmetric left \(pp \) ring containing a finitely generated \(p \)-injective maximal left ideal.
9. \(R \) is a left \(pp \) ring containing a finitely generated \(p \)-injective maximal left ideal and \(\text{Soc}(R) \subseteq \text{Soc}(R) \).
10. \(R \) is a left \(pp \) ring containing a finitely generated \(p \)-injective maximal left ideal and \(J(R) = Z(l)(R) \).
11. \(R \) is a left \(pp \) ring containing a finitely generated \(p \)-injective maximal left ideal and \(\text{Soc}(R) \cap J(R) = \text{Soc}(R) \cap Z(l)(R) \).

It is well known that von Neumann regular ring satisfying the ACC on left annihilators is semisimple Artinian. Hence we have the corollary which generalizes [4, Corollary 4].

Corollary 2.10. The following conditions are equivalent for a ring \(R \):

1. \(R \) is a semisimple Artinian ring.
2. \(R \) is a left \(MC2 \), left \(pp \) and left Noetherian ring containing a \(p \)-injective maximal left ideal.
3. \(R \) is a left \(MC2 \) left \(pp \) ring containing a finitely generated \(p \)-injective maximal left ideal and satisfies the ACC on left annihilators.
A ring R is called strongly regular if $a^2 = a$ for all $a \in R$. It is well known that R is a strongly regular if and only if R is an abelian von Neumann regular ring. Since von Neumann regular rings are reflexive, by [16, Theorem 2.6], we obtain that R is strongly regular if and only if R quasi-normal von Neumann regular. Therefore, by Theorem 2.9, we have the following corollary.

Corollary 2.11. The following conditions are equivalent for a ring R:

1. R is a strongly regular ring with nonzero socle.
2. R is a quasi-normal left MC2 left pp ring containing a finitely generated p-injective maximal left ideal.
3. R is a semiabelian left MC2 left pp ring containing a finitely generated p-injective maximal left ideal.

Let M be a left R-module and N a submodule of M. N is called an absolute summand if for any submodule T of M such that T is maximal with respect to $N \cap T = 0$, we have $N \oplus T = M.$

Lemma 2.12. Let e be a central idempotent element of R. Then Re is an absolute summand of R.

Proof. Let T be a left ideal of R such that T is maximal with respect to $Re \cap T = 0$. Then $Te = eT \subseteq Re \cap T = 0$ and so $T = T(1-e) \subseteq R(1-e)$. Since $Re \cap R(1-e) = 0$, $R(1-e) = T$. Therefore $Re \oplus T = R$, which shows that Re is an absolute summand of R. □

Theorem 2.13. R is a left V-ring if and only if R is a left MC2 left GV-ring such that for any $e \in ME_1(R)$, Re is an absolute summand of R.

Proof. The necessity follows from [10, Proposition 3.7].

Now let R be left MC2 left GV-ring such that for any $e \in ME_1(R)$, Re is an absolute summand of R. If W is a projective simple left R-module and $f : I \rightarrow W$ is a nonzero morphism with $\text{ker}(f) = K$, then K is a summand of I, that is $I = K \oplus L$ for a left ideal L of R. As L is isomorphic to W, $L = Re$ for some $e \in ME_1(R)$ because R is left MC2. By hypothesis, L is an absolute summand of R. Then by a same proof of [10, Proposition 3.7], we obtain W is injective. □

Since every left minimal idempotent element of left MC2 left min-abel rings is central, by Lemma 2.12 and Theorem 2.13, we have the following corollary.

Corollary 2.14. Let R be a left min-abel ring. Then the following conditions are equivalent:

1. R is left V-ring.
2. R is left MC2 left GV-ring.
As for left min-abel rings and strongly left min-abel rings, we have the following characterization.

Theorem 2.15. (1) The following conditions are equivalent for a ring R:

(a) R is left min-abel.

(b) For any $e \in ME_1(R)$, $eR(1-e)Re = 0$.

(c) For any $k \in PM_1(R)$, $l(k)Rk = 0$.

(d) For any $a \in N(R)$ and $e \in ME_1(R)$, $ae = 0$ implies $eaRe = 0$.

(e) For any $a \in N(R)$ and $e \in ME_1(R)$, $ea = 0$ implies $eRe = 0$.

(2) The following conditions are equivalent for a ring R:

(a) R is strongly left min-abel.

(b) For any $k \in PM_1(R)$, $kRl(k) = 0$.

(c) R is left min-abel and for any $e \in ME_1(R)$, RRe is injective.

Proof. (1) (a) \implies (b) and (a) \implies (e) are trivial, because every element of $ME_1(R)$ is left semicentral.

(b) \implies (c) Let $k \in PM_1(R)$. Then $l(k) = l(e) = R(1-e)$ for some $e \in ME_1(R)$, so $k = ek$. If $l(k)Rk \neq 0$, then $Rk = l(k)Rk$, so by (b), $eRk = el(k)Rk = \epsilon R(1-e)Rk = 0$, which implies $k = ek = 0$, a contradiction. Hence $l(k)Rk = 0$.

(c) \implies (d) By (c), $l(e)Re = 0$ for all $e \in ME_1(R)$. Since $a \in l(e)$, $aRe = 0$ which implies $eaRe = 0$.

(d) \implies (a) and (e) \implies (a) Let $e \in ME_1(R)$. For any $a \in R$, write $h = ae - eae$. If $h \neq 0$, then $ch = 0, he = h$ and $h^2 = 0$, so $RRe = Rh$. By (e), $eRhe = 0$, so $eRe = eRhe = eRe = 0$, which is a contradiction. If let $e = ch, c \in R$ and set $g = hc$, then $g \in ME_1(R)$ and $h = gh$. Since $hg = h^2c = 0$, by (d), $ghRg = 0$. Therefore $hRg = 0$. Since $hR = gR, gRg = hRg = 0$. This is a contradiction.

Hence, in any case, $h = 0$, which implies R is left min-abel.

(2) (a) \implies (b) Let $k \in PM_1(R)$. Then $l(k) = R(1-e)$ for some $e \in ME_1(R)$.

By (a), e is central. Hence $kRl(k) = kR(1-e) = (1-e)kR = 0$.

(b) \implies (c) Let $e \in ME_1(R)$. Then by (b), $eRl(e) = 0$, which implies $eR(1-e) = 0$. If $(1-e)Re \neq 0$, then $Re = R(1-e)Re$. Therefore $eRe = eR(1-e)Re = 0$, which is a contradiction. Hence $(1-e)Re = 0$, which shows that e is central.

Consequently, R is left min-abel and RRe is injective by (2).

(c) \implies (a) By [13, Theorem 1.7], R is left $MC2$. By [12, Theorem 1.8], R is strongly left min-abel.

\[\square\]

References

