Sandwich Results for Certain Subclasses of Multivalent Analytic Functions Defined by Srivastava-Attiya Operator

M. K. Aouf, A. Shamandy, A. O. Mostafa and Eman A. Adwan*
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
e-mail: mkaouf127@yahoo.com, shamandy16@hotmail.com, adelae254@yahoo.com and eman.a2009@yahoo.com

Abstract. In this paper, we obtain some applications of first order differential subordination and superordination results involving the operator $J_{s,b}^{\lambda}$ for certain normalized p-valent analytic functions associated with that operator.

1. Introduction

Let $H(U)$ be the class of analytic functions in the open unit disc $U = \{z : z \in \mathbb{C}, |z| < 1\}$ and let $H[a,p]$ be the subclass of $H(U)$ consisting of functions of the form:

(1.1) $f(z) = a + a_pz^p + a_{p+1}z^{p+1} + \ldots$ $(a \in \mathbb{C}; p \in \mathbb{N} = \{1,2,\ldots\}).$

Also, let $A(p)$ denote the class of functions of the form:

(1.2) $f(z) = z^p + \sum_{k=1}^{\infty} a_{k+p}z^{k+p}$ $(p \in \mathbb{N}),$

and let $A_1 = A(1)$.

If $f, g \in A(p)$, we say that f is subordinate to g, written $f \prec g$ if there exists a Schwarz function w, which (by definition) is analytic in U with $w(0) = 0$ and $|w(z)| < 1$ for all $z \in U$, such that $f(z) = g(w(z)), z \in U$. Furthermore, if the function g is univalent in U, then we have the following equivalence (cf., e.g., [5], [9] and [10]):

$f(z) \prec g(z) \Leftrightarrow f(0) = g(0)$ and $f(U) \subset g(U)$.

* Corresponding Author.
Received December 23, 2010; accepted September 23, 2011.
2010 Mathematics Subject Classification: 30C45.
Key words and phrases: Multivalent functions, differential subordination, superordination, sandwich theorems, Srivastava-Attiya operator.
Let \(p, h \in H(U) \) and let \(\varphi(r, s, t; z) : C^3 \times U \to C \). If \(p \) and \(\varphi(p(z), zp'(z), z^2p''(z); z) \) are univalent functions in \(U \) and if \(p \) satisfies the second-order superordination

\[
(1.3) \quad h(z) \prec \varphi(p(z), zp'(z), z^2p''(z); z),
\]

then \(p \) is a solution of the differential superordination (1.3). Note that if \(f \) is subordinate to \(g \), then \(g \) is superordinate to \(f \). An analytic function \(q \) is called a subordinant of (1.3), if \(q(z) \prec p(z) \) for all functions \(p \) satisfying (1.3). An univalent subordinant \(q \) that satisfies \(q(z) \prec q(z) \) for all subordinants of (1.3) is called the best subordinant. Recently, Miller and Mocanu [11] obtained sufficient conditions on the functions \(h, q \) and \(\varphi \) for which the following implication holds:

\[
(1.4) \quad h(z) \prec \varphi \left(p(z), zp'(z), z^2p''(z); z \right) \Rightarrow q(z) \prec p(z).
\]

Using the results of Miller and Mocanu [11], Bulboaca [4] considered certain classes of first order differential superordinations as well as superordination-preserving integral operators [3]. Ali et al. [1], have used the results of Bulboaca [4] to obtain sufficient conditions for normalized analytic functions to satisfy:

\[
q_1(z) \prec \frac{zf''(z)}{f'(z)} \prec q_2(z),
\]

where \(q_1 \) and \(q_2 \) are univalent functions in \(U \) with \(q_1(0) = q_2(0) = 1 \). Also, Tuneski [20] obtained a sufficient condition for starlikeness of \(f \) in terms of the quantity \(\frac{f'''(z)f(z)}{(f'(z))^2} \). Recently, Shanmugam et al. [17] obtained sufficient conditions for the normalized analytic functions \(f \) to satisfy

\[
q_1(z) \prec \frac{f(z)}{zf'(z)} \prec q_2(z)
\]

and

\[
q_1(z) - \frac{z^2f'(z)}{(f(z))^2} \prec q_2(z).
\]

They [17] also obtained results for functions defined by using Carlson-Shaffer operator.

For functions \(f \) given by (1.1) and \(g \in A(p) \) given by \(g(z) = z^p + \sum_{k=1}^{\infty} b_{k+p} z^{k+p} \), the Hadamard product (or convolution) of \(f \) and \(g \) is defined by

\[
(f \ast g)(z) = z^p + \sum_{k=1}^{\infty} a_{k+p} b_{k+p} z^{k+p} = (g \ast f)(z).
\]
We begin our investigation by recalling that a general Hurwitz-Lerch Zeta function $\Phi(z, s, a)$ defined by (see [19])

$$\Phi(z, s, a) = \sum_{k=0}^{\infty} \frac{z^k}{(k + a)^s},$$

$$a \in \mathbb{C}\setminus\mathbb{Z}_0^- = \{0, -1, -2, \ldots\}; \mathbb{Z}_0^- = \mathbb{Z}\setminus\mathbb{N}, \mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}; s \in \mathbb{C}$$

when $|z| < 1; R\{s\} > 1$ when $|z| = 1$.

Recently, Srivastava and Attiya [18] (see also [8], [13] and [14]) introduced and investigated the linear operator $J_{s;b} : A_1 \rightarrow A_1$, defined in terms of the Hadamard product by

$$J_{s;b}f(z) = G_{s;b}(z) * f(z) \quad (z \in U; b \in \mathbb{C}\setminus\mathbb{Z}_0^-; s \in \mathbb{C}),$$

where for convenience,

$$G_{s;b} = (1 + b)^s[\Phi(z, s, b) - b^{-s}] \quad (z \in U).$$

In [21], Wang et al. defined the operator $J_{s,b}^{\lambda,p} : A(p) \rightarrow A(p)$ by

$$J_{s,b}^{\lambda,p}f(z) = f_{s,b}^{\lambda,p}(z) * f(z)$$

$$(z \in U; b \in \mathbb{C}\setminus\mathbb{Z}_0^-; s \in \mathbb{C}; \lambda > -p; p \in \mathbb{N}; f \in A(p)),$$

where

$$f_{s,b}^{\lambda,p}(z) * f_{s,b}^{\lambda,p}(z) = \frac{z^p}{(1 - z)^{\lambda+p}}$$

and

$$f_{s,b}^{\lambda,p}(z) = z^p + \sum_{k=1}^{\infty} \frac{(\lambda + p)^k}{k!} \left(\frac{p + b}{k + p + b}\right)^s a_{k+p}z^{k+p} \quad (z \in U; p \in \mathbb{N}).$$

It is easy to obtain from (1.6), (1.7) and (1.8) that

$$J_{s,b}^{\lambda,p}f(z) = z^p + \sum_{k=1}^{\infty} \frac{(\lambda + p)^k}{k!} \left(\frac{p + b}{k + p + b}\right)^s a_{k+p}z^{k+p},$$

where $(\gamma)_k$, is the Pochhammer symbol defined in terms of the Gamma function Γ, by

$$(\gamma)_k = \frac{\Gamma(\gamma + n)}{\Gamma(\gamma)} = \begin{cases} 1 & (k = 0) \\ \gamma(\gamma + 1)\ldots(\gamma + k - 1) & (k \in \mathbb{N}). \end{cases}$$

We note that

$$J_{0,b}^{1-p,p}f(z) = f(z) \quad (f \in A(p)).$$
Using (1.9), it is easy to verify that (see [21])

\[(1.10) \quad z \left(J_{s+b}^{\lambda,p} f \right)'(z) = (p+b) J_{s+b}^{\lambda,p}(f)(z) - b J_{s+b+1}^{\lambda,p}(f)(z) \]

and

\[(1.11) \quad z \left(J_{s+b}^{\lambda,p} f \right)'(z) = (p+\lambda) J_{s+b+1}^{\lambda+1,p}(f)(z) - \lambda J_{s+b}^{\lambda,p}(f)(z). \]

It should be remarked that the linear operator \(J_{s+b}^{\lambda,p} \) is generalization of many other linear operators considered earlier. We have:

1. \(J_{0}^{\lambda,p} f(z) = D^{\lambda+p-1} f(z) \) (\(\lambda > -p, p \in \mathbb{N} \)), where \(D^{\lambda+p-1} \) is the \((\lambda+p-1)\)-th order Ruscheweyh derivative of a function \(f(z) \in A(p) \) (see [7]);
2. \(J_{1}^{\lambda,p} f(z) = J_{v}^{\lambda,p} f(z) \) (\(v > -p \)), where the generalized Bernardi-Libera-Livingston operator \(J_{v}^{\lambda,p} \) was studied by Choi et al. [6];
3. \(J_{m,0}^{\lambda,p} f(z) = I_{m}^{\lambda,p} f(z) \) (\(m \in \mathbb{N}_{0} = \mathbb{N} \cup \{0\} \)), where for \(p = 1 \) the integral operator \(I_{m}^{1} \) was introduced and studied by Salagean [15];
4. \(J_{1}^{\lambda,p} f(z) = J_{1}^{\lambda,p} f(z) \) (\(\sigma > 0 \)), where the integral operator \(I_{1}^{\sigma} \) was studied by Shams et al. [16] and Aouf et al. [2];
5. \(J_{\gamma,0}^{\lambda,p} f(z) = P_{\tau}^{\gamma} f(z) \) (\(\gamma \geq 0, \tau > 1 \)), where the integral operator \(P_{\tau}^{\gamma} \) was introduced and studied by Patel and Sahoo [12].

In this paper, we obtain sufficient conditions for the normalized analytic function \(f \) defined by using the operator \(J_{s+b}^{\lambda,p} \) to satisfy:

\[q_{1}(z) \prec \left(\frac{z^{p}}{\lambda^{\lambda,p} f(z)} \right)^{\mu} \prec q_{2}(z) \]

and \(q_{1} \) and \(q_{2} \) are given univalent functions in \(U \).

2. Definitions and preliminaries

In order to prove our results, we shall need the following definition and lemmas.

Definition 1 ([11]). Let \(Q \) be the set of all functions \(f \) that are analytic and injective on \(U \setminus E(f) \), where

\[E(f) = \{ \zeta \in \partial U : \lim_{z \to \zeta} f(z) = \infty \}, \]

and are such that \(f'(\zeta) \neq 0 \) for \(\zeta \in \partial U \setminus E(f) \).

Lemma 1 ([9]). Let \(q \) be univalent in the unit disc \(U \), and let \(\theta \) and \(\varphi \) be analytic in a domain \(D \) containing \(q(U) \), with \(\varphi(w) \neq 0 \) when \(w \in q(U) \). Set

\[(2.1) \quad Q(z) = z q'(z) \varphi(q(z)) \] and \(h(z) = \theta(q(z)) + Q(z) \)
suppose that
(i) \(Q \) is a starlike function in \(U \),
(ii) \(\text{Re}\left\{ \frac{zh'(z)}{Q(z)} \right\} > 0, z \in U. \)

If \(p \) is analytic in \(U \) with \(p(0) = q(0) \), \(p(U) \subseteq D \) and

\[
\theta(p(z)) + zp'(z)\varphi(p(z)) \prec \theta(q(z)) + zq'(z)\varphi(q(z)),
\]
then \(p(z) \prec q(z) \), and \(q \) is the best dominant of \((2.2) \).

Lemma 2 ([4]). Let \(q \) be a convex univalent function in \(U \) and \(\theta \) and \(\varphi \) be analytic in a domain \(D \) containing \(q(U) \). Suppose that
(i) \(\text{Re}\left\{ \frac{\theta'(q(z))}{\varphi(q(z))} \right\} > 0 \) for \(z \in U \),
(ii) \(Q(z) = zq'(z)\varphi(q(z)) \) is starlike univalent in \(U \).

If \(p \in H[q(0), 1] \cap Q \), \(p(U) \subseteq D \), \(\theta(p(z)) + zp'(z)\varphi(p(z)) \) is univalent in \(U \), and

\[
\theta(q(z)) + zq'(z)\varphi(q(z)) \prec \theta(p(z)) + zp'(z)\varphi(p(z)),
\]
then \(q(z) \prec p(z) \), and \(q \) is the best subordinant of \((2.3) \).

3. Applications to the operator \(J_{s,b}^{p} \) and sandwich theorems

Unless otherwise mentioned, we shall assume in the reminder of this paper that \(b \in \mathbb{C}\setminus \mathbb{Z}^{-} \), \(s \in \mathbb{C}, p \in \mathbb{N}, \lambda > -p, \gamma, \tau, \zeta \in \mathbb{C}, \Omega, \mu \in \mathbb{C}^{*} = \mathbb{C} \setminus \{0\}, z \in U \) and the powers are understood as principle values.

Theorem 1. Let \(q(z) \) be analytic and univalent in \(U \) with \(q(z) \neq 0 \). Suppose that

\[
\frac{zq'(z)}{q(z)} \text{ is starlike univalent in } U.
\]

Let

\[
\text{Re}\{1 + \frac{\gamma}{\Omega} q(z) + \frac{2\zeta}{\Omega} (q(z))^2 - \frac{zq'(z)}{q(z)} + \frac{zq''(z)}{q'(z)} \} > 0,
\]

and

\[
\chi(f, s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu) = \tau + \gamma \left(\frac{z^p}{J_{s,b}^{\lambda,p} f(z)} \right)^{\mu} + \zeta \left(\frac{z^p}{J_{s,b}^{\lambda,p} f(z)} \right)^{2\mu} + \Omega \mu \left(p - \frac{z}{J_{s,b}^{\lambda,p} f(z)} \right).
\]

If \(q \) satisfies the following subordination:

\[
\chi(f, s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu) \prec \tau + \gamma q(z) + \zeta (q(z))^2 + \Omega \frac{zq'(z)}{q(z)}.
\]
Then

\[
\left(\frac{z^p}{J_{s,b}^p f(z)} \right)^\mu \prec q(z)
\]

and \(q \) is the best dominant.

Proof. Define a function \(p(z) \) by

\[
p(z) = \left(\frac{z^p}{J_{s,b}^p f(z)} \right)^\mu (z \in U).
\]

Then the function \(p(z) \) is analytic in \(U \) and \(p(0) = 1 \).

Therefore, differentiating (3.5) logarithmically with respect to \(z \) and using the identity (1.10) in the resulting equation, we have

\[
\tau + \gamma \left(\frac{z^p}{J_{s,b}^p f(z)} \right)^\mu + \zeta \left(\frac{z^p}{J_{s,b}^p f(z)} \right)^{2\mu} + \Omega \left(\frac{z}{J_{s,b}^p f(z)} \right) p = \frac{z}{p(z)}. \tag{3.6}
\]

Using (3.3) and (3.6), we have

\[
\tau + \gamma p(z) + \zeta (p(z))^2 + \Omega \frac{z^p(z)}{p(z)}. \tag{3.7}
\]

Setting

\[
\theta(w) = \tau + \gamma w + \zeta w^2 \text{ and } \varphi(w) = \frac{\Omega}{w}
\]

it can be easily observed that \(\theta \) is analytic in \(\mathbb{C} \), \(\varphi \) is analytic in \(\mathbb{C}^* \) and \(\varphi(w) \neq 0 \ (w \in \mathbb{C}^*) \). Hence, the result now follows by using Lemma 1.

Taking \(q(z) = \frac{1 + Az}{1 + Bz} \ (-1 \leq B < A \leq 1) \) in Theorem 1, the condition (3.1) reduces to

\[
\text{Re}\{1 + \frac{2}{\Omega} \left(\frac{1 + Az}{1 + Bz} \right) + \frac{2\zeta}{\Omega} \left(\frac{1 + Az}{1 + Bz} \right)^2 - \frac{(A - B)z}{(1 + Az)(1 + Bz)} - \frac{2Bz}{1 + Bz} \} > 0. \tag{3.9}
\]

hence, we obtain the following corollary.

Corollary 1. Let \(f(z) \in A(p) \), assume that (3.9) holds true, \(-1 \leq B < A \leq 1\) and (3.10)

\[
\chi(f, s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu) \prec \tau + \gamma \left(\frac{1 + Az}{1 + Bz} \right) + \zeta \left(\frac{1 + Az}{1 + Bz} \right)^2 + \Omega \frac{(A - B)z}{(1 + Az)(1 + Bz)}.
\]
where \(\chi(f; s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu) \) is given by (3.2), then

\[
\left(\frac{z^p}{f'(z)} \right)^{\mu} < \frac{1 + Az}{1 + Bz},
\]

and \(\frac{1 + Az}{1 + Bz} \) is the best dominant of (3.10).

Taking \(q(z) = \left(\frac{1 + z}{1 - z} \right)^v \) \((0 < v \leq 1) \) in Theorem 1, the condition (3.1) reduces to

(3.11) \[\Re\{1 + \frac{\gamma}{\Omega} \left(\frac{1 + z}{1 - z} \right)^v + \frac{2\zeta}{\Omega} \left(\frac{1 + z}{1 - z} \right)^{2v} - \frac{2z^2}{1 - z^2} \} > 0, \]

hence, we obtain the following corollary.

Corollary 2. Let \(f(z) \in A(p) \), assume that (3.11) holds true, \(0 < v \leq 1 \) and

(3.12) \[\chi(f; s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu) \prec \tau + \gamma \left(\frac{1 + z}{1 - z} \right)^v + \zeta \left(\frac{1 + z}{1 - z} \right)^{2v} + \Omega \frac{2 vz}{(1 - z)^2}, \]

where \(\chi(f; s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu) \) is given by (3.2), then

\[
\left(\frac{z^p}{f'(z)} \right)^{\mu} < \left(\frac{1 + z}{1 - z} \right)^v,
\]

and \(\left(\frac{1 + z}{1 - z} \right)^v \) is the best dominant of (3.12).

Putting \(s = 0 \) and \(\lambda = 1 - p \) \((p \in \mathbb{N}) \) in Theorem 1, we obtain the following corollary.

Corollary 3. Let \(q(z) \) be analytic and univalent in \(U \) with \(q(z) \neq 0 \). Suppose that \(\frac{zq'(z)}{q(z)} \) is starlike univalent in \(U \). If \(f(z) \in A(p) \), assume that (3.1) holds true and

(3.13) \[G(f; p, \gamma, \tau, \zeta, \Omega, \mu) = \tau + \gamma \left(\frac{z^p}{f(z)} \right)^{\mu} + \zeta \left(\frac{z^p}{f(z)} \right)^{2\mu} + \Omega \mu \left(p - \frac{zf'(z)}{f(z)} \right). \]

If \(q \) satisfies the following subordination:

(3.14) \[G(f; p, \gamma, \tau, \zeta, \Omega, \mu) \prec \tau + \gamma q(z) + \zeta (q(z))^2 + \Omega \frac{zq'(z)}{q(z)}. \]

Then

\[
\left(\frac{z^p}{f(z)} \right)^{\mu} \prec q(z)
\]
and \(q \) is the best dominant of (3.14).

Putting \(p = 1 \) in Corollary 3, we obtain the following corollary.

Corollary 4. Let \(q(z) \) be analytic and univalent in \(U \) with \(q(z) \neq 0 \). Suppose that \(\frac{zq'(z)}{q(z)} \) is starlike univalent in \(U \). If \(f(z) \in A \), assume that (3.1) holds true and

\[
K(f, p, \gamma, \tau, \zeta, \Omega, \mu) = \tau + \gamma \left(\frac{z}{f(z)} \right)^2 + \Omega \mu \left(1 - \frac{z'f(z)}{f(z)} \right).
\]

If \(q \) satisfies the following subordination:

\[
K(f, p, \gamma, \tau, \zeta, \Omega, \mu) \prec \tau + \gamma q(z) + \zeta q(z)^2 + \Omega \frac{zq'(z)}{q(z)}.
\]

Then

\[
\left(\frac{z}{f(z)} \right)^\mu \prec q(z)
\]

and \(q \) is the best dominant of (3.16).

Putting \(s = 0 \) in Theorem 1, we obtain the following corollary.

Corollary 5. Let \(q(z) \) be analytic and univalent in \(U \) with \(q(z) \neq 0 \). Suppose that \(\frac{zq'(z)}{q(z)} \) is starlike univalent in \(U \). If \(f(z) \in A(p) \), assume that (3.1) holds true and

\[
D(f, p, \lambda, \gamma, \tau, \zeta, \Omega, \mu) = \tau + \gamma \left(\frac{z^p}{D^{\lambda+p-1}f(z)} \right)^2 + \Omega \mu \left(p - \frac{z(D^{\lambda+p-1}f(z)'^p}{D^{\lambda+p-1}f(z)} \right).
\]

If \(q \) satisfies the following subordination:

\[
D(f, p, \lambda, \gamma, \tau, \zeta, \Omega, \mu) \prec \tau + \gamma q(z) + \zeta q(z)^2 + \Omega \frac{zq'(z)}{q(z)}.
\]

then

\[
\left(\frac{z^p}{D^{\lambda+p-1}f(z)} \right)^\mu \prec q(z)
\]

and \(q \) is the best dominant of (3.18).

Putting \(s = 1, b = v(v > -p) \) and \(\lambda = 1 - p(p \in \mathbb{N}) \) in Theorem 1, we obtain the following corollary.

Corollary 6. Let \(q(z) \) be analytic and univalent in \(U \) with \(q(z) \neq 0 \). Suppose that \(\frac{zq'(z)}{q(z)} \) is starlike univalent in \(U \). If \(f(z) \in A(p) \), assume that (3.1) holds true and

\[
(f, v, p, \gamma, \tau, \zeta, \Omega, \mu) = \tau + \gamma \left(\frac{z^p}{I_{v,p}f(z)} \right)^2 + \Omega \mu \left(p - \frac{z(I_{v,p}f(z)'^p}{I_{v,p}f(z)} \right).
\]
If q satisfies the following subordination:

\[(3.20) \quad (f, v, p, \beta, \alpha, \eta, \mu) \prec \tau + \gamma q(z) + \zeta (q(z))^2 + \Omega \frac{zq'(z)}{q(z)},\]

then

\[\left(\frac{z^p}{J_{v,p} f(z)} \right)^\mu \prec q(z)\]

and q is the best dominant of (3.20).

Putting $s = m$ ($m \in \mathbb{N}_0$), $b = 0$ and $\lambda = 1 - p$ ($p \in \mathbb{N}$) in Theorem 1, we obtain the following corollary.

Corollary 7. Let $q(z)$ be analytic and univalent in U with $q(z) \neq 0$. Suppose that $\frac{zq'(z)}{q(z)}$ is starlike univalent in U. If $f(z) \in A(p)$, assume that (3.1) holds true and

\[(3.21) \quad S(f, m, p, \gamma, \tau, \zeta, \Omega, \mu) = \tau + \gamma \left(\frac{z^p}{I^m_{p} f(z)} \right)^\mu + \zeta \left(\frac{z^p}{I^m_{p} f(z)} \right)^{2\mu} + \Omega \mu \left(p - \frac{z^m_{p} f(z)}{I^m_{p} f(z)} \right).\]

If q satisfies the following subordination:

\[(3.22) \quad S(f, m, p, \gamma, \tau, \zeta, \Omega, \mu) \prec \tau + \gamma q(z) + \zeta (q(z))^2 + \Omega \frac{zq'(z)}{q(z)},\]

then

\[\left(\frac{z^p}{I^m_{p} f(z)} \right)^\mu \prec q(z)\]

and q is the best dominant of (3.22).

Putting $s = \sigma$ ($\sigma > 0$), $b = 1$ and $\lambda = 1 - p$ ($p \in \mathbb{N}$) in Theorem 1, we obtain the following corollary.

Corollary 8. Let $q(z)$ be analytic and univalent in U with $q(z) \neq 0$. Suppose that $\frac{zq'(z)}{q(z)}$ is starlike univalent in U. If $f(z) \in A(p)$, assume that (3.1) holds true and

\[(3.23) \quad \varphi(f, \sigma, p, \gamma, \tau, \zeta, \Omega, \mu) = \tau + \gamma \left(\frac{z^p}{I^\sigma_{p} f(z)} \right)^\mu + \zeta \left(\frac{z^p}{I^\sigma_{p} f(z)} \right)^{2\mu} + \Omega \mu \left(p - \frac{z^\sigma_{p} f(z)}{I^\sigma_{p} f(z)} \right).\]

If q satisfies the following subordination:

\[(3.24) \quad \varphi(f, \sigma, p, \gamma, \tau, \zeta, \Omega, \mu) \prec \tau + \gamma q(z) + \zeta (q(z))^2 + \Omega \frac{zq'(z)}{q(z)},\]

then

\[\left(\frac{z^p}{I^\sigma_{p} f(z)} \right)^\mu \prec q(z)\]
and \(q \) is the best dominant of (3.24).

Theorem 2. Let \(q \) be a convex univalent function in \(U \), \(q(z) \neq 0 \) and \(\frac{z q'(z)}{q(z)} \) be starlike univalent in \(U \). Assume that

\[
\text{(3.25)} \quad \operatorname{Re} \left\{ \frac{2 \zeta}{\Omega} (q(z))^2 + \frac{\gamma}{\Omega} q(z) \right\} > 0.
\]

If \(f \in A(p), 0 \neq \left(\frac{z^p}{J_{s,b}^p f(z)} \right)^\mu \in H[q(0), 1] \cap Q, \chi(f, s, b, p, \gamma, \tau, \zeta, \Omega, \mu) \) univalent in \(U \), and

\[
\text{(3.26)} \quad \tau + \gamma q(z) + \zeta (q(z))^2 + \Omega \frac{z q'(z)}{q(z)} \prec \chi(f, s, b, p, \gamma, \tau, \zeta, \Omega, \mu),
\]

where \(\chi(f, s, b, p, \gamma, \tau, \zeta, \Omega, \mu) \) is given by (3.2), then

\[
q(z) \prec \left(\frac{z^p}{J_{s,b}^p f(z)} \right)^\mu,
\]

and \(q \) is the best subordinant of (3.26).

Proof. Taking

\[
\theta(w) = \tau + \gamma w + \zeta w^2 \quad \text{and} \quad \varphi(w) = \frac{\Omega}{w},
\]

it is easily observed that \(\theta \) is analytic in \(\mathbb{C} \), \(\varphi \) is analytic in \(\mathbb{C}^* \) and \(\varphi(w) \neq 0 \) \((w \in \mathbb{C}^*)\). Since \(q \) is a convex (univalent) function it follows that

\[
\operatorname{Re} \left\{ \frac{\theta'(q(z))}{\varphi(q(z))} \right\} = \operatorname{Re} \left\{ \frac{2 \zeta}{\Omega} (q(z))^2 + \frac{\gamma}{\Omega} q(z) \right\} q'(z) > 0.
\]

Thus the assertion (3.26) of Theorem 2 follows by an application of Lemma 2. \(\square \)

Putting \(s = 0 \) and \(\lambda = 1 - p \) \((p \in \mathbb{N})\) in Theorem 2, it is easy to check that the assumption (3.25) holds, we obtain the following corollary.

Corollary 9. Let \(q \) be a convex univalent function in \(U \), \(q(z) \neq 0 \) and \(\frac{z q'(z)}{q(z)} \) be starlike univalent in \(U \). If \(f \in A(p), 0 \neq \left(\frac{z^p}{J_{s,b}^p f(z)} \right)^\mu \in H[q(0), 1] \cap Q \) and \(G(f, p, \gamma, \tau, \zeta, \Omega, \mu) \) univalent in \(U \), where \(G(f, p, \gamma, \tau, \zeta, \Omega, \mu) \) is given by (3.13), then

\[
\text{(3.27)} \quad \tau + \gamma q(z) + \zeta (q(z))^2 + \Omega \frac{z q'(z)}{q(z)} \prec G(f, p, \gamma, \tau, \zeta, \Omega, \mu),
\]

implies

\[
q(z) \prec \left(\frac{z^p}{f(z)} \right)^\mu.
\]
and \(q \) is the best dominant of (3.27).

Putting \(s = 0 \) in Theorem 2, it is easy to check that the assumption (3.25) holds, we obtain the following corollary.

Corollary 10. Let \(q \) be a convex univalent function in \(U \), \(q(z) \neq 0 \) and \(\frac{zq'(z)}{q(z)} \) be starlike univalent in \(U \). If \(f \in A(p), 0 \neq \left(\frac{z^p}{f(z)} \right)^\mu \in H[q(0), 1] \cap Q \) and \(D(f, p, \lambda, \gamma, \tau, \zeta, \Omega, \mu) \) univalent in \(U \), where \(D(f, p, \lambda, \gamma, \tau, \zeta, \Omega, \mu) \) is given by (3.17), then

\[
\tau + \gamma q(z) + \zeta (q(z))^2 + \Omega \frac{zq'(z)}{q(z)} \prec D(f, p, \lambda, \gamma, \tau, \zeta, \Omega, \mu),
\]

implies

\[
q(z) \prec \left(\frac{z^p}{D\lambda+p-1f(z)} \right)^\mu
\]

and \(q \) is the best dominant of (3.28).

Putting \(s = 1, b = v (v > p) \) and \(\lambda = 1 - p (p \in \mathbb{N}) \) in Theorem 2, it is easy to check that the assumption (3.25) holds, we obtain the following corollary.

Corollary 11. Let \(q \) be a convex univalent function in \(U \), \(q(z) \neq 0 \) and \(\frac{zq'(z)}{q(z)} \) be starlike univalent in \(U \). If \(f \in A(p), 0 \neq \left(\frac{z^p}{f(z)} \right)^\mu \in H[q(0), 1] \cap Q \) and \(f, v, p, \gamma, \tau, \zeta, \Omega, \mu \) univalent in \(U \), where \((f, v, p, \gamma, \tau, \zeta, \Omega, \mu) \) is given by (3.19), then

\[
\tau + \gamma q(z) + \zeta (q(z))^2 + \Omega \frac{zq'(z)}{q(z)} \prec (f, v, p, \gamma, \tau, \zeta, \Omega, \mu),
\]

implies

\[
q(z) \prec \left(\frac{z^p}{Jv,pf(z)} \right)^\mu
\]

and \(q \) is the best dominant of (3.29).

Putting \(s = m (m \in \mathbb{N}_0), b = 0 \) and \(\lambda = 1 - p (p \in \mathbb{N}) \) in Theorem 2, it is easy to check that the assumption (3.25) holds, we obtain the following corollary.

Corollary 12. Let \(q \) be a convex univalent function in \(U \), \(q(z) \neq 0 \) and \(\frac{zq'(z)}{q(z)} \) be starlike univalent in \(U \). If \(f \in A(p), 0 \neq \left(\frac{z^p}{f(z)} \right)^\mu \in H[q(0), 1] \cap Q \) and \(S(f, m, p, \gamma, \tau, \zeta, \Omega, \mu) \) univalent in \(U \), where \(S(f, m, p, \gamma, \tau, \zeta, \Omega, \mu) \) is given by (3.21), then

\[
\tau + \gamma q(z) + \zeta (q(z))^2 + \Omega \frac{zq'(z)}{q(z)} \prec S(f, m, p, \gamma, \tau, \zeta, \Omega, \mu),
\]
implies

\[q(z) \prec \left(\frac{z^p}{F^m f(z)} \right) ^\mu \]

and \(q \) is the best dominant of (3.30).

Putting \(s = \sigma (\sigma > 0), b = 1 \) and \(\lambda = 1 - p (p \in \mathbb{N}) \) in Theorem 2, it is easy to check that the assumption (3.25) holds, we obtain the following corollary.

Corollary 13. Let \(q \) be a convex univalent function in \(U \), \(q(z) \neq 0 \) and \(zq_1'(z) \) be starlike univalent in \(U \). If \(f \in A(p), 0 \neq \left(\frac{z^p}{J^p f(z)} \right) ^\mu \in H[q(0), 1] \cap Q \) and \(\varphi(f, \sigma, p, \gamma, \tau, \zeta, \Omega, \mu) \) univalent in \(U \), where \(\varphi(f, \sigma, p, \gamma, \tau, \zeta, \Omega, \mu) \) is given by (3.23), then

\[(3.31) \quad \tau + \gamma q_1(z) + \zeta (q_1(z))^2 + \Omega \frac{zq_1'(z)}{q_1(z)} \prec \varphi(f, \sigma, p, \gamma, \tau, \zeta, \Omega, \mu), \]

implies

\[q(z) \prec \left(\frac{z^p}{J^p f(z)} \right) ^\mu \]

and \(q \) is the best dominant of (3.31).

Combining Theorem 1 and Theorem 2, we get the following sandwich theorem.

Theorem 3. Let \(q_1 \) be convex univalent in \(U \) and \(q_2 \) be univalent in \(U \). Suppose that \(q_1 \) and \(q_2 \) satisfies (3.1) and (3.25), respectively. If \(f \in A(p), \left(\frac{z^p}{J^p f(z)} \right) ^\mu \in H[q(0), 1] \cap Q \) and \(\chi(f, s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu) \) is univalent in \(U \), where \(\chi(f, s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu) \) is defined in (3.2), then

\[(3.32) \quad \tau + \gamma q_1(z) + \zeta (q_1(z))^2 + \Omega \frac{zq_1'(z)}{q_1(z)} \prec \chi(f, s, b, \lambda, p, \gamma, \tau, \zeta, \Omega, \mu) \prec \tau + \gamma q_2(z) + \zeta (q_2(z))^2 + \Omega \frac{zq_2'(z)}{q_2(z)}, \]

implies

\[q_1(z) \prec \left(\frac{z^p}{J^p f(z)} \right) ^\mu \prec q_2(z) \]

and \(q_1, q_2 \) are respectively the best subordinant and dominant of (3.32).

Putting \(s = 0 \) and \(\lambda = 1 - p (p \in \mathbb{N}) \) in Theorem 3, we obtain the following corollary.

Corollary 14. Let \(q_1 \) be convex univalent in \(U \) and \(q_2 \) univalent in \(U \), \(q_1 \neq 0 \) and
\(q_2 \neq 0 \) in \(U \). Suppose that \(q_1 \) and \(q_2 \) satisfies (3.1) and (3.25), respectively. If \(f \in A(p), \left(\frac{z^p f'(z)}{f(z)} \right)^\mu \in H[q(0), 1] \cap Q \) and \(G(f, p, \gamma, \tau, \zeta, \Omega, \mu) \) is univalent in \(U \), where \(G(f, p, \gamma, \tau, \zeta, \Omega, \mu) \) is defined in (3.13), then

\[
\tau + \gamma q_1(z) + \zeta (q_1(z))^2 + \Omega \frac{z q_1'(z)}{q_1(z)} < G(f, p, \gamma, \tau, \zeta, \Omega, \mu) < \tau + \gamma q_2(z) + \zeta (q_2(z))^2 + \Omega \frac{z q_2'(z)}{q_2(z)},
\]

implies

\[
q_1(z) < \left(\frac{z^p}{f(z)} \right)^\mu < q_2(z)
\]

and \(q_1, q_2 \) are respectively the best subordinant and dominant of (3.33).

Remark. Combining: (1) Corollary 5 and Corollary 10; (2) Corollary 6 and Corollary 11; (3) Corollary 7 and Corollary 12; (4) Corollary 8 and Corollary 13, we obtain similar sandwich theorems for the corresponding operators.

Acknowledgements The authors would like to thank the referees of the paper for their helpful suggestions.

References

