The Line n-sigraph of a Symmetric n-sigraph-V

P. Siva Kota Reddy*
Department of Mathematics, Siddaganga Institute of Technology, Tumkur-572 103, India.
e-mail: reddy_math@yahoo.com; pskreddy@sit.ac.in

K. M. Nagaraja
Department of Mathematics, JSS Academy of Technical Education, Bangalore-560 060, India.
e-mail: nagkmn@gmail.com

M. C. Geetha
Department of Mathematics, East West Institute of Technology, Bangalore-560 091, India.
e-mail: geethalingarajub@gmail.com

Abstract. An n-tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}, 1 \leq k \leq n$. Let $H_n = \{(a_1, a_2, ..., a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \leq k \leq n\}$ be the set of all symmetric n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $\mathcal{S}_n = (G, \sigma)$ $(\mathcal{S}_n = (G, \mu))$, where $G = (V, E)$ is a graph called the underlying graph of \mathcal{S}_n and $\sigma : E \to H_n$ $(\mu : V \to H_n)$ is a function. The restricted super line graph of index r of a graph G, denoted by $RL_r(G)$. The vertices of $RL_r(G)$ are the r-subsets of $E(G)$ and two vertices $P = \{p_1, p_2, ..., p_r\}$ and $Q = \{q_1, q_2, ..., q_r\}$ are adjacent if there exists exactly one pair of edges, say p_i and q_j, where $1 \leq i, j \leq r$, that are adjacent edges in G. Analogously, one can define the restricted super line symmetric n-sigraph of index r of a symmetric n-sigraph $\mathcal{S}_n = (G, \sigma)$ as a symmetric n-sigraph $RL_r(\mathcal{S}_n) = (RL_r(G), \sigma')$, where $RL_r(G)$ is the underlying graph of $RL_r(\mathcal{S}_n)$, where for any edge PQ in $RL_r(S_n)$, $\sigma'(PQ) = \sigma(P) \sigma(Q)$. It is shown that for any symmetric n-sigraph \mathcal{S}_n, its $RL_r(\mathcal{S}_n)$ is i-balanced and we offer a structural characterization of super line symmetric n-sigraphs of index r. Further, we characterize symmetric n-sigraphs \mathcal{S}_n for which $RL_r(\mathcal{S}_n) \sim L_r(\mathcal{S}_n)$ and $RL_r(S_n) \cong L_r(\mathcal{S}_n)$, where \sim and \cong denotes switching equivalence and isomorphism and $RL_r(S_n)$ and $L_r(S_n)$ are denotes the restricted super line symmetric n-sigraph of index r and super line symmetric n-sigraph of index r of \mathcal{S}_n respectively.

* Corresponding Author.
Received February 21, 2012; accepted May 8, 2013.
2010 Mathematics Subject Classification: 05C22.
Key words and phrases: Symmetric n-sigraphs, Symmetric n-marked graphs, Balance, Switching, Restricted super line symmetric n-sigraphs, Super line symmetric n-sigraphs, Complementation.
1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [2]. We consider only finite, simple graphs free from self-loops.

Let \(n \geq 1 \) be an integer. An \(n \)-tuple \((a_1, a_2, \ldots, a_n)\) is symmetric, if \(a_k = a_{n-k+1}, 1 \leq k \leq n \). Let \(H_n = \{(a_1, a_2, \ldots, a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \leq k \leq n\} \) be the set of all symmetric \(n \)-tuples. Note that \(H_n \) is a group under coordinate wise multiplication, and the order of \(H_n \) is \(2^m \), where \(m = \lceil \frac{n}{2} \rceil \).

A symmetric \(n \)-sigraph (symmetric \(n \)-marked graph) is an ordered pair \(S_n = (G, \sigma) \) (\(S_n = (G, \mu) \)), where \(G = (V, E) \) is a graph called the underlying graph of \(S_n \) and \(\sigma : E \rightarrow H_n \) (\(\mu : V \rightarrow H_n \)) is a function.

In this paper by an \(n \)-tuple/\(n \)-sigraph/\(n \)-marked graph we always mean a symmetric \(n \)-tuple/symmetric \(n \)-sigraph/symmetric \(n \)-marked graph.

An \(n \)-tuple \((a_1, a_2, \ldots, a_n)\) is the identity \(n \)-tuple, if \(a_k = + \), for \(1 \leq k \leq n \), otherwise it is a non-identity \(n \)-tuple. In an \(n \)-sigraph \(S_n = (G, \sigma) \) an edge labelled with the identity \(n \)-tuple is called an identity edge, otherwise it is a non-identity edge.

Further, in an \(n \)-sigraph \(S_n = (G, \sigma) \), for any \(A \subseteq E(G) \) the \(n \)-tuple \(\sigma(A) \) is the product of the \(n \)-tuples on the edges of \(A \).

In [17], the authors defined two notions of balance in \(n \)-sigraph \(S_n = (G, \sigma) \) as follows (See also R. Rangarajan and P.S.K.Reddy [6]):

Definition 1.1. Let \(S_n = (G, \sigma) \) be an \(n \)-sigraph. Then,

(i) \(S_n \) is identity balanced (or \(i \)-balanced), if product of \(n \)-tuples on each cycle of \(S_n \) is the identity \(n \)-tuple, and

(ii) \(S_n \) is balanced, if every cycle in \(S_n \) contains an even number of non-identity edges.

Note: An \(i \)-balanced \(n \)-sigraph need not be balanced and conversely.

The following characterization of \(i \)-balanced \(n \)-sigraphs is obtained in [17].

Proposition 1.1. (E. Sampathkumar et al. [17])

An \(n \)-sigraph \(S_n = (G, \sigma) \) is \(i \)-balanced if, and only if, it is possible to assign \(n \)-tuples to its vertices such that the \(n \)-tuple of each edge uv is equal to the product of the \(n \)-tuples of u and v.

Let \(S_n = (G, \sigma) \) be an \(n \)-sigraph. Consider the \(n \)-marking \(\mu \) on vertices of \(S_n \) defined as follows: each vertex \(v \in V \), \(\mu(v) \) is the \(n \)-tuple which is the product of the \(n \)-tuples on the edges incident with \(v \). **Complement** of \(S_n \) is an \(n \)-sigraph
Given a graph \(G = (V, E) \), the \(r \)-restricted super line \(n \)-sigraph \(S_n = (G, \sigma) \) is defined as follows: (See also [3, 7, 8] & [9]-[16])

Let \(S_n = (G, \sigma) \) and \(S'_n = (G', \sigma') \), be two \(n \)-sigraphs. Then \(S_n \) and \(S'_n \) are said to be isomorphic, if there exists an isomorphism \(\phi : G \rightarrow G' \) such that if \(uv \) is an edge in \(S_n \) with label \((a_1, a_2, ..., a_n)\) then \(\phi(u)\phi(v) \) is an edge in \(S'_n \) with label \((a_1, a_2, ..., a_n)\).

Given an \(n \)-marking \(\mu \) of an \(n \)-sigraph \(S_n = (G, \sigma) \), switching \(S_n \) with respect to \(\mu \) is the operation of changing the \(n \)-tuple of every edge \(uv \) of \(S_n \) by \(\mu(u)\sigma(uv)\mu(v) \). The \(n \)-sigraph obtained in this way is denoted by \(S_\mu(S_n) \) and is called the \(\mu \)-switched \(n \)-sigraph or just switched \(n \)-sigraph.

Further, an \(n \)-sigraph \(S_n \) switches to \(n \)-sigraph \(S'_n \) (or that they are switching equivalent to each other), written as \(S_n \sim S'_n \), whenever there exists an \(n \)-marking of \(S_n \) such that \(S_\mu(S_n) \cong S'_n \).

Two \(n \)-sigraphs \(S_n = (G, \sigma) \) and \(S'_n = (G', \sigma') \) are said to be cycle isomorphic, if there exists an isomorphism \(\phi : G \rightarrow G' \) such that the \(n \)-tuple \(\sigma(C) \) of every cycle \(C \) in \(S_n \) equals to the \(n \)-tuple \(\sigma(\phi(C)) \) in \(S'_n \). We make use of the following known result (see [17]).

Proposition 1.2. ([E. Sampathkumar et al. [17]])

Given a graph \(G \), any two \(n \)-sigraphs with \(G \) as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

In this paper, we introduced the notion called restricted super line \(n \)-sigraph of index \(r \) and we obtained some interesting results in the following sections. The restricted super line \(n \)-sigraph of index \(r \) is the generalization of line \(n \)-sigraph.

2. Restricted Super Line \(n \)-sigraph \(L_r(S_n) \)

In [4], K. Manjula introduced the concept of the \emph{restricted super line graph}, which generalizes the notion of line graph. For a given \(G \), its restricted super line graph \(\mathcal{RL}_r(G) \) of index \(r \) is the graph whose vertices are the \(r \)-subsets of \(E(G) \), and two vertices \(P = \{p_1, p_2, ..., p_r\} \) and \(Q = \{q_1, q_2, ..., q_r\} \) are adjacent if there exists exactly one pair of edges, say \(p_i \) and \(q_j \), where \(1 \leq i, j \leq r \), that are adjacent edges in \(G \). In [1], the authors introduced the concept of the \emph{super line graph} as follows: For a given \(G \), its super line graph \(L_r(G) \) of index \(r \) is the graph whose vertices are the \(r \)-subsets of \(E(G) \), and two vertices \(P \) and \(Q \) are adjacent if there exist \(p \in P \) and \(q \in Q \) such that \(p \cap q \neq \emptyset \).

The \emph{restricted super line graph} \(L_r(S_n) \) is defined as follows: For a given \(n \)-sigraph \(S_n = (G, \sigma) \), its restricted super line graph \(L_r(S_n) \) is the graph whose vertices are the \(r \)-subsets of \(E(G) \), and two vertices \(P \) and \(Q \) are adjacent if there exist \(p \in P \) and \(q \in Q \) such that \(p \cap q \neq \emptyset \).
and $q \in Q$ such that p and q are adjacent edges in G. Clearly $RL_r(G)$ is a spanning subgraph of $L_r(G)$. From the definitions of $RL_r(G)$ and $L_r(G)$, it turns out that $RL_1(G)$ and $L_1(G)$ coincides with the line graph $L(G)$.

In this paper, we extend the notion of $RL_r(G)$ to realm of n-sigraphs as follows: The restricted super line n-sigraph of index r of an n-sigraph $S_n = (G, \sigma)$ as an n-sigraph $RL_r(S_n) = (RL_r(G), \sigma')$, where $RL_r(G)$ is the underlying graph of $RL_r(S_n)$, where for any edge PQ in $RL_r(S_n)$, $\sigma'(PQ) = \sigma(P)\sigma(Q)$.

Hence, we shall call a given n-sigraph S_n is a restricted super line n-sigraph of index r if it is isomorphic to the restricted super line n-sigraph of index r, $RL_r(S'_n)$ of some n-sigraph S'_n. In the following subsection, we shall present a characterization of restricted super line n-sigraph of index r.

The following result indicates the limitations of the notion $RL_r(S_n)$ as introduced above, since the entire class of i-unbalanced n-sigraphs is forbidden to be restricted super line n-sigraphs of index r.

Proposition 2.1. For any n-sigraph $S_n = (G, \sigma)$, its $RL_r(S_n)$ is i-balanced.

Proof. Let σ' denote the n-tuple of $RL_r(S_n)$ and let the n-tuple σ of S_n be treated as an n-marking of the vertices of $RL_r(S_n)$. Then by definition of $RL_r(S_n)$ we see that $\sigma'(P, Q) = \sigma(P)\sigma(Q)$, for every edge PQ of $RL_r(S_n)$ and hence, by Proposition 1.1, the result follows. \qed

For any positive integer k, the k^{th} iterated restricted super line n-sigraph of index r, $RL_r(S_n)$ of S_n is defined as follows:

$$RL_r^0(S_n) = S_n, \quad RL_r^k(S_n) = RL_r(RL_r^{k-1}(S_n))$$

Corollary 2.2. For any n-sigraph $S_n = (G, \sigma)$ and any positive integer k, $RL_r^k(S_n)$ is i-balanced.

In [16], the authors introduced the notion of the super line n-sigraph, which generalizes the notion of line n-sigraph [18]. The super line n-sigraph of index r of an n-sigraph $S_n = (G, \sigma)$ as an n-sigraph $L_r(S_n) = (L_r(G), \sigma')$, where $L_r(G)$ is the underlying graph of $L_r(S_n)$, where for any edge PQ in $L_r(S_n)$, $\sigma'(PQ) = \sigma(P)\sigma(Q)$. The above notion restricted super line n-sigraph is another generalization of line n-sigraphs.

Proposition 2.3. (P.S.K.Reddy et al. [16])

For any n-sigraph $S_n = (G, \sigma)$, its $L_r(S_n)$ is i-balanced.

In [4], the author characterized whose restricted super line graphs of index r that are isomorphic to $L_r(G)$.
Proposition 2.4. (K. Manjula [4])

For a graph $G = (V,E)$, $RL_r(G) \cong L_r(G)$ if, and only if, G is either $K_{1,2} \cup nK_2$ or nK_2.

We now characterize n-sighraphs those $RL_r(S_n)$ are switching equivalent to their $L_r(S_n)$.

Proposition 2.5. For any n-sighraph $S_n = (G, \sigma)$, $RL_r(S_n) \sim L_r(S_n)$ if, and only if, G is either $K_{1,2} \cup nK_2$ or nK_2.

Proof. Suppose $RL_r(S_n) \sim L_r(S_n)$. This implies, $RL_r(G) \cong L_r(G)$ and hence by Proposition 2.4, we see that the graph G must be isomorphic to either $K_{1,2} \cup nK_2$ or nK_2.

Conversely, suppose that G is either $K_{1,2} \cup nK_2$ or nK_2. Then $RL_r(G) \cong L_r(G)$ by Proposition 2.4. Now, if S_n any n-sighraph on any of these graphs, by Proposition 2.1 and Proposition 2.3, $RL_r(S_n)$ and $L_r(S_n)$ are i-balanced and hence, the result follows from Proposition 1.2. \qed

We now characterize n-sighraphs those $RL_r(S_n)$ are isomorphic to their $L_r(S_n)$. The following result is a stronger form of the above result.

Proposition 2.6. For any n-sighraph $S_n = (G, \sigma)$, $RL_r(S_n) \cong L_r(S_n)$ if, and only if, G is either $K_{1,2} \cup nK_2$ or nK_2.

Proof. Clearly $RL_r(S_n) \cong L_r(S_n)$, where G is either $K_{1,2} \cup nK_2$ or nK_2. Consider the map $f : V(RL_r(G)) \to V(L_r(S))$ defined by $f(e_1e_2, e_2e_3) = (e_1'e_2', e_2'e_3')$ is an isomorphism. Let σ be any n-tuple on $K_{1,2} \cup nK_2$ or nK_2. Let $e = (e_1e_2, e_2e_3)$ be an edge in $RL_r(G)$, where G is $K_{1,2} \cup nK_2$ or nK_2. Then the n-tuple of the edge e in $RL_r(G)$ is the $\sigma(e_1e_2)e(e_2e_3)$ which is the n-tuple of the edge $(e_1'e_2', e_2'e_3')$ in $L_r(G)$, where G is $K_{1,2} \cup nK_2$ or nK_2. Hence the map f is also an n-sighraph isomorphism between $RL_r(S_n)$ and $L_r(S_n)$. \qed

3. Characterization of Restricted Super Line n-sighraphs $RL_r(S_n)$

The following result characterize n-sighraphs which are restricted super line n-sighraphs of index r.

Proposition 3.1. An n-sighraph $S_n = (G, \sigma)$ is a restricted super line n-sighraph of index r if and only if S_n is i-balanced n-sighraph and its underlying graph G is a restricted super line graph of index r.

Proof. Suppose that S_n is i-balanced and G is a $RL_r(G)$. Then there exists a graph H such that $L_r(H) \cong G$. Since S_n is i-balanced, by Proposition 1.1, there exists an n-marking μ of G such that each edge uv in S_n satisfies $\sigma(uv) = \mu(u)\mu(v)$. Now consider the n-sighraph $S'_n = (H, \sigma')$, where for any edge e in H, $\sigma'(e)$ is the
n-marking of the corresponding vertex in G. Then clearly, $\mathcal{R}_r(S'_n) \cong S_n$. Hence S_n is a restricted super line n-sigraph of index r.

Conversely, suppose that $S_n = (G, \sigma)$ is a restricted super line n-sigraph of index r. Then there exists an n-sigraph $S'_n = (H, \sigma')$ such that $\mathcal{R}_r(S'_n) \cong S_n$. Hence G is the $\mathcal{R}_r(G)$ of H and by Proposition 2.1, S_n is i-balanced.

If we take $r = 1$ in $\mathcal{R}_r(S_n)$, then this is the ordinary line n-sigraph. In [18], the authors obtained structural characterization of line n-sigraphs and clearly Proposition 3.1 is the generalization of line signed graphs.

Proposition 3.2. An n-sigraph $S_n = (G, \sigma)$ is a line n-sigraph if, and only if, S_n is i-balanced n-sigraph and its underlying graph G is a line graph.

4. Complementation

In this section, we investigate the notion of complementation of a graph whose edges have signs (a sigraph) in the more general context of graphs with multiple signs on their edges. We look at two kinds of complementation: complementing some or all of the signs, and reversing the order of the signs on each edge.

For any $m \in H_n$, the m-complement of $a = (a_1, a_2, \ldots, a_n)$ is: $a^m = a_m$. For any $M \subseteq H_n$, and $m \in H_n$, the m-complement of M is $M^m = \{a^m : a \in M\}$.

For any $m \in H_n$, the m-complement of an n-sigraph $S_n = (G, \sigma)$, written $(S_n)_m$, is the same graph but with each edge label $a = (a_1, a_2, \ldots, a_n)$ replaced by a^m.

For an n-sigraph $S_n = (G, \sigma)$, the $\mathcal{R}_r(S_n)$ is i-balanced (Proposition 2.1). We now examine, the condition under which m-complement of $\mathcal{R}_r(S_n)$ is i-balanced, where for any $m \in H_n$.

Proposition 4.1. Let $S_n = (G, \sigma)$ be an n-sigraph. Then, for any $m \in H_n$, if $\mathcal{R}_r(G)$ is bipartite then $(\mathcal{R}_r(S_n))^m$ is i-balanced.

Proof. Since, by Proposition 2.1, $\mathcal{R}_r(S_n)$ is i-balanced, for each k, $1 \leq k \leq n$, the number of n-tuples on any cycle C in $\mathcal{R}_r(S_n)$ whose k^{th} co-ordinate are $-i$ is even. Also, since $\mathcal{R}_r(G)$ is bipartite, all cycles have even length; thus, for each k, $1 \leq k \leq n$, the number of n-tuples on any cycle C in $\mathcal{R}_r(S_n)$ whose k^{th} co-ordinate are $+i$ is also even. This implies that the same thing is true in any m-complement, where for any $m \in H_n$. Hence $(\mathcal{R}_r(S_n))^m$ is i-balanced. □
The Line n-sigraph of a Symmetric n-sigraph-V

References