Poset Properties Determined by the Ideal - Based Zero-divisor Graph

KASI PORSELVI AND BALASUBRAMANIAN ELAVARASAN*
Department of Mathematics, School of Science and Humanities, Karunya University, Coimbatore - 641 114, Tamilnadu, India
e-mail: porselvi94@yahoo.co.in and belavarasan@gmail.com

ABSTRACT. In this paper, we study some properties of finite or infinite poset \(P \) determined by properties of the ideal based zero-divisor graph properties \(G_J(P) \), for an ideal \(J \) of \(P \).

1. Introduction

Throughout this paper, \((P, \leq)\) denotes a poset and the graph \(G \) denotes the ideal based zero-divisor graph of a poset \(P \) with respect to ideal \(I \) of \(P \). For \(M \subseteq P \), let \(L(M) := \{x \in P : x \leq m \text{ for all } m \in M\} \) denotes the lower cone of \(M \) in \(P \), and dually let \(U(M) := \{x \in P : m \leq x \text{ for all } m \in M\} \) be the upper cone of \(M \) in \(P \). For \(A, B \subseteq P \) we shall write \(L(A, B) \) instead of \(L(A \cup B) \) and dually for upper cones. If \(M = \{x_1, ..., x_n\} \) is finite, then we use the notation \(L(x_1, ..., x_n) \) instead of \(L(\{x_1, ..., x_n\}) \) (and dually). By an ideal we mean a non-empty subset \(I \subseteq P \) such that if \(b \in I \) and \(a \leq b \), then \(a \in I \). A proper order-ideal \(I \) of \(P \) is called prime if for any \(a, b \in P \), \(L(a, b) \subseteq I \) implies \(a \in I \) or \(b \in I \). In [2], Beck introduced the concept of a zero-divisor graph of a commutative ring with identity, but this work was mostly concerned with coloring of rings. Later D. F. Anderson and Livingston in [1] studied the subgraph \(\Gamma(R) \) of \(G(R) \) whose vertices are the nonzero zero-divisors of \(R \). In [10], Redmond has generalized the notion of the zero-divisor graph. For a given ideal \(I \) of a commutative ring \(R \), he defined an undirected graph \(\Gamma_I(R) \) with vertices \(\{x \in R \setminus I : xy \in I \text{ for some } y \in R \setminus I\} \), where distinct vertices \(x \) and \(y \) are adjacent if and only if \(xy \in I \). The zero-divisor graph of various algebraic structures has been studied by several authors [4],[5],[7] and[11].

In [8], Radomr Halas and Marek Jukl have introduced the concept of a graph structure of a posets, let \((P, \leq)\) be a poset with \(0 \). Then the zero-divisor graph of \(P \), denoted by \(\Gamma(P) \), is an undirected graph whose vertices are just the elements of \(P \) with two distinct vertices \(x \) and \(y \) are joined by an edge if and only if \(L(x, y) = \{0\} \),

* Corresponding Author.
Received November 29, 2011; accepted May 24, 2013.
2010 Mathematics Subject Classification: 06D6.
Key words and phrases: Posets, ideals, prime ideals, graph, cycle and cut-set.
and proved some interesting results related with clique and chromatic number of this graph structure. In [6], we generalized the notion of zero-divisor graph of P. Let P be a poset and J be an ideal of P. Then the graph of P with respect to the ideal J, denoted by G_J(P), is the graph whose vertices are the set \{x \in P \mid J : L(x, y) \subseteq J \} for some y \in P \setminus J with distinct vertices x and y are adjacent if and only if L(x, y) \subseteq J. If J = \{0\}, then G_J(P) = G(P), and J is a prime ideal of P if and only if G_J(P) = \phi. And investigated the interplay between the poset properties of P and the graph-theoretics properties of G_J(P). Following [9], let I be an ideal of P. Then the extension of I by x \in P is meant the set \langle x, I \rangle = \{a \in P : L(a, x) \subseteq I\}. For any s \in V(G), N(s) denotes the set of all vertices adjacent to s and \overline{K(G)} denotes the core of G. In this paper the notations of graph theory are from [3], the notations of posets from [8].

2. Poset Properties Related to a Single Vertex

Theorem 2.1. Let G be the graph of a poset P. If there exist s, t \in V(G) such that N(s) \neq \phi, N(t) \neq \phi, then L(x, y) \subseteq (N(s) \cap N(t)) \cup I for x \in N(s), y \in N(t). In addition, if x is an end vertex, then I \cup \{s\} is an ideal of P.

Proof. Let t_1 \in L(x, y) \setminus I for x \in N(s) and y \in N(t). Then L(x, s) \subseteq I and L(y, t) \subseteq I. If t_1 \in \{x, y\}, then it is easy to see that t_1 \in N(s) \cap N(t). If t_1 = s, then s \in L(x, s) \subseteq I, a contradiction. So t_1 \neq s. Similar way, we can get t_1 \neq t. Now, L(t_1, s) \subseteq L(x, s) \subseteq I and L(t_1, t) \subseteq L(y, t) \subseteq I which imply t_1 \in N(s) \cap N(t). If x \in N(s) is an end vertex of G, then \langle x, I \rangle = I \cup \{s\} is an ideal of P.

Corollary 2.2. Let G be a graph of a poset P and y = s = t = x be a path in G. Then

(i) K(G) is non-empty and it contains at least \(|L(x, y) \setminus I|\) triangles.

(ii) If x and y are end vertices, then P has at least two ideals of the form I \cup \{s\}.

Theorem 2.3. Let P be a poset with corresponding graph G such that P = V(G) \cup \{I\}. For an element x \in P \setminus I, assume that V(G) = C_x \cup \{x\} \cup T(x) is a disjoint union of three subsets satisfying the following conditions:

(i) T(x) contains all end vertices adjacent to x.

(ii) There is no edge linking a vertex in T(x) with a vertex in C_x, whenever T(x) \neq \phi and C_x \neq \phi.

(iii) Either C_x \neq \phi or |V(G)| \geq 3 and x is adjacent to at least one end vertex. Then L(a, b) \subseteq C_x \cup \{x\} \cup I for all a, b \in C_x \cup \{x\} \cup I.

Proof. Let us assume that T(x) \neq \phi and let a, b \in C_x \cup \{x\} \cup I. If C_x = \phi, by assumption (iii), there exists an end vertex y adjacent with x which gives I \cup \{y\} is an ideal of P. So L(a, b) \subseteq I \cup \{y\}. If C_x \neq \phi, then there is at least one element z \in C_x such that z \neq x. Suppose L(x) \cap T(x) \neq \phi. Then there exists y \in L(x) \cap T(x) with such that L(z, y) \subseteq I, contradicting condition (ii). So L(x) \cap T(x) = \phi, i.e., L(x) \subseteq C_x \cup \{x\} \cup I. It remains to consider the case a, b \in C_x \cup \{x\} \cup I. Assume to the contrary that there is an element t \in L(a, b) such that t \notin C_x \cup \{x\} \cup I. If a
is not adjacent to x, then there exists $c \in C_x$ such that $L(a, c) \subseteq I$ which implies there is an edge $c - t$, where $c \in C_x, t \in T(x)$, contradicting condition (ii). If a is adjacent to x, then by condition (i), a is not an end vertex, then by condition (ii), there is an element $c(\neq a) \in C_x$ such that $a - c$. In this case also we have an edge $c - t$, contradicting condition (ii). So $L(a, b) \subseteq C_x \cup \{x\} \cup I$.

For any vertex $x \in V(G)$, T_x denotes the set of all end vertices adjacent to x in G.

Corollary 2.4. Let P be a poset with corresponding graph G such that $V(G) = P\setminus I$. If G is not a star graph, then for any $x \in V(G)$, we have $L(a, b) \subseteq P\setminus T_x$ for all $a, b \in P\setminus T_x$.

Proof. In Theorem 2.3, let $T(x) = T_x$. If G is not a star graph, then $C_x \neq \emptyset$ and $P\setminus T(x) = C_x \cup \{x\} \cup I$. The result then follows from Theorem 2.3.

Theorem 2.5. Let G be the graph of a poset P and assume that G has a cycle. For any vertex x in G that is not an end vertex. If any two vertices in $L(a)$ are comparable ((i.e) $a \leq b$, for $a, b \in L(u)$), then $L(u, v) \subseteq T_x \cup I$ for all $u, v \in T_x \cup I$.

Proof. Suppose $L(u, v) \notin I$ for some $u, v \in T_x$. Then there exists $e \in L(u, v) \setminus I$ such that $e \neq x$. If e is not an end vertex of G, by Theorem 3.4 of [6], it is in the core of G. Then there exists a vertex d in the core such that $d \notin \{x, e\}$ and $x - c - d$. Since $L(d, u) \notin I$, there exists $e \in L(d, u) \setminus I$ such that $e \in I$ or $e \in I$ as $L(e, c) \subseteq I$, a contradiction. So e is an end vertex of G.

Note that if we consider $x = \{a\}$ and $u = \{b, c\}$ in Example 2.8, then $\{b\}$ and $\{c\}$ are not comparable, but $L(\{b, c\}) \notin T_x \cup I$. Therefore, Theorem 2.5 is not valid in general. Hence, the condition comparable on the set $L(u)$ is not superficial in Theorem 2.5.

Theorem 2.6. Let G be a graph of a poset P. If G does not contain an infinite clique, then P satisfies the a.c.c on $< x, I >$ for $x \in P$.

Proof. Suppose that $< x_1, I > \subseteq< x_2, I > \subseteq ... < x_i, I > ...$ be an increasing chain of ideals, for $x_i \in P$. If some $x_i \in I$, then the proof is trivial. So assume that $x_i \in P\setminus I$ for all i. For each $i \geq 2$, let $a_i < x_i, I > \setminus< x_{i-1}, I >$. Then $L(x_{n-1}, a_n) \notin I$ for $n = 2, 3, ...$. So there exists $y_n \in L(x_{n-1}, a_n) \setminus I$ such that $L(y_i, y_i) \subseteq I$ for any $i \neq j$. i.e., we have an infinite clique in G, a contradiction. So P satisfies the a.c.c on $< x, I >$ for $x \in P$.

Example 2.7. Let G be a graph of a poset P. For any $x, y \in V(G)$ with $U(x, y) \cap V(G) \neq \emptyset$, then the edge $x - y$ is contained in a triangle.

Proof. Let $x, y \in V(G)$ with $x - y$ and $U(x, y) \cap V(G) \neq \emptyset$. Then there exists $t \in U(x, y) \cap V(G)$ such that $t \notin \{x, y\}$. Since $diam(G) \leq 3$, we have either $x - a - t$ or $x - a - b - t$ for some $a, b \in V(G)$. If $x - a - t$, then $x - a - y - x$. If $x - a - b - t$, then $x - b - t$ which implies $x - b - y - x$.

We now show by an example that the Theorem 2.7 will fail if $U(x, y) \cap V(G) = \emptyset$ for any edge $x - y$ in G.

Theorem 2.8. Let $P(X)$ be the power set of a set $X = \{a, b, c\}$. Then $P(X)$ is a poset under the set inclusion \subseteq. If $I = \{\phi\}$, then the graph G is:

Here $U(\{a, b\}, \{c\}) \cap V(G) = \phi$ but the edge $\{a, b\} - \{c\}$ is not contained in a triangle.

The distance $d(v)$ of a vertex v in a connected finite graph G is the sum of the distances v to each vertex of G. The median $M(G)$ of a graph G is the subgraph induced by the set of vertices having minimum distance. Let G be a connected graph, and $T \subseteq V(G)$. We say T is a cut vertex set if $G \setminus T$ is disconnected. Also the cut vertex set T is called a minimal cut vertex set for G if no proper subset of T is a cut vertex set. In addition, if $T = \{x\}$, then x is called a cut vertex. \[\Box\]

Theorem 2.9. Let G be a graph of a poset P. Then $V(M(G)) \cup I$ is an ideal of P. In addition, if T is a minimal cut vertex set of G, then $T \cup I$ is an ideal of P.

Proof. Let $x \in V(M(G)) \setminus I$ and $y \in P$ with $y \leq x$. Suppose $y \notin I$. Then $y \in V(G)$ and $d(y, z) \leq d(x, z)$ for any $z \in V(G)$ which implies $d(y) = \sum_{z \in V(G)} d(y, z) \leq \sum_{z \in V(G)} d(x, z) = d(x)$. Since $x \in V(M(G))$, we have $d(y) = d(x)$, and hence $y \in V(M(G))$. Let T be a minimal cut vertex set of G and $x \in T, p \in P$ such that $p \leq x$. Then there exist two vertices z, y of the graph G such that $y - x - z$ is a path in G and y, z belong to two distinct connected components of $G \setminus T$, as $T \setminus \{x\}$ is not a cut vertex. Suppose $p \notin T \cup I$. Then there exists a path $y - p - z$ in $G \setminus T$, a contradiction. \[\Box\]

Corollary 2.10. Let G be a graph of a poset P. If x is cut-vertex of G, then $I \cup \{x\}$ is an ideal of P. For $y \in G \setminus \{x\}$, x is adjacent to y or $x \leq y$.

Corollary 2.11. Let G be a graph of G, and let $x - y$ be a bridge e of G such that G_1 and G_2 are the two connected components of $G \setminus \{e\}$. Then the following conclusions hold:

(i) If G_1 and G_2 have at least two vertices, then $I \cup \{x\}$ and $I \cup \{y\}$ are ideals of P. Also, if G_1 or G_2 has only one vertex, then $I \cup \{x\}$ or $I \cup \{y\}$ is an ideal of P.

(ii) If G_1 and G_2 have exactly one vertex, then $I \cup \{x\}$ and $I \cup \{y\}$ are ideals of P, and hence $I \cup \{x, y\}$ is an ideal of P.

Proof. It follows from Corollary 2.10 and Theorem 2.1. \[\Box\]

The center $C(G)$ of a connected finite graph G is the subgraph induced by the vertices of G with eccentricity equal the radius of G.

Theorem 2.12. Let G be a graph of a poset P. For a finite poset, $V(C(G)) \cup I$ is an ideal of P.

Proof. Let $x \in V(C(G)) \cup I$ and $p \in P$ such that $p \leq x$. Suppose $p \notin I$. Then $p \in V(G)$ and $e(p) = \max\{d(u,p) : u \in V(G)\} \leq \max\{d(u,x) : u \in V(G)\} = e(x)$. Since $x \in V(C(G))$, we have $e(p) = e(x)$, hence $p \in V(C(G))$.

Acknowledgments. The authors express their sincere thanks to the referee for his/her valuable comments and suggestions which improve the paper a lot.

References

