Lactobacillus plantarum 발효에 의한 갈근탕의 생물 전환 성분 연구
양민철* · 김동선* · 정상원 · 마진열†
한국한의학연구원 신한방제제연구센터

Bioconversion Constituents of Galgeun-tang Fermented by Lactobacillus plantarum
Min Cheol Yang*, Dong Seon Kim*, Sang Won Jeong and Jin Yeul Ma†
Herbal Medicine Improvement Research Center, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea.

ABSTRACT : Galgeun-tang (GGT) is a traditional medicinal formula that is widely prescribed to treat cold, asthma, and hives in Korea. Fermented herbal medicines can be made more effective than normal herbal medicines by increasing the absorption and bioavailability of the active compounds. In this study, we fermented Galgeun-tang to produce bioconversion constituents using Lactobacillus plantarum (GGT144), and found that four peaks were decreased, three peaks were increased and two new peaks appeared in the HPLC-DAD chromatogram. After HPLC-DAD-guided fractionation of the newly-appearing compounds (1 and 5) and the increased (6, 7, and 9) compounds, the structure of the compounds was determined using NMR and MS. Using this approach the compounds were identified to be pyrogallol (1), daidzein (5), liquiritigenin (6), cinnamyl alcohol (7), and formononetin (9), respectively. In addition, the decreased compounds were identified to be daidzin (2), liquiritin (3), ononin (4), and cinnam aldehyde (8) using HPLC-DAD analysis with standard compounds. The high performance liquid chromatography method was used to quantify the nine constituents in GGT and GGT144. All calibration curves of the standard compounds displayed excellent linearity with a \(R^2 > 0.9968 \).

Key Words : Galgeun-tang, Fermentation, Lactobacillus plantarum, HPLC-DAD, Calibration Curves

INTRODUCTION

Galgeun-tang (GGT) is a Korea traditional herbal decoction used for the treatment of fever, cold, asthma, inflammation, and hives in Korea. Fermented herbal medicines can be made more effective than normal herbal medicines by increasing the absorption and bioavailability of the active compounds. In this study, we fermented Galgeun-tang to produce bioconversion constituents using Lactobacillus plantarum (GGT144), and found that four peaks were decreased, three peaks were increased and two new peaks appeared in the HPLC-DAD chromatogram. After HPLC-DAD-guided fractionation of the newly-appearing compounds (1 and 5) and the increased (6, 7, and 9) compounds, the structure of the compounds was determined using NMR and MS. Using this approach the compounds were identified to be pyrogallol (1), daidzein (5), liquiritigenin (6), cinnamyl alcohol (7), and formononetin (9), respectively. In addition, the decreased compounds were identified to be daidzin (2), liquiritin (3), ononin (4), and cinnam aldehyde (8) using HPLC-DAD analysis with standard compounds. The high performance liquid chromatography method was used to quantify the nine constituents in GGT and GGT144. All calibration curves of the standard compounds displayed excellent linearity with a \(R^2 > 0.9968 \).

Key Words : Galgeun-tang, Fermentation, Lactobacillus plantarum, HPLC-DAD, Calibration Curves

INTRODUCTION

APPROACH : Galgeun-tang (GGT) is a Korea traditional herbal decoction used for the treatment of fever, cold, asthma, inflammation, and hives in Korea. Fermented herbal medicines can be made more effective than normal herbal medicines by increasing the absorption and bioavailability of the active compounds. In this study, we fermented Galgeun-tang to produce bioconversion constituents using Lactobacillus plantarum (GGT144), and found that four peaks were decreased, three peaks were increased and two new peaks appeared in the HPLC-DAD chromatogram. After HPLC-DAD-guided fractionation of the newly-appearing compounds (1 and 5) and the increased (6, 7, and 9) compounds, the structure of the compounds was determined using NMR and MS. Using this approach the compounds were identified to be pyrogallol (1), daidzein (5), liquiritigenin (6), cinnamyl alcohol (7), and formononetin (9), respectively. In addition, the decreased compounds were identified to be daidzin (2), liquiritin (3), ononin (4), and cinnam aldehyde (8) using HPLC-DAD analysis with standard compounds. The high performance liquid chromatography method was used to quantify the nine constituents in GGT and GGT144. All calibration curves of the standard compounds displayed excellent linearity with a \(R^2 > 0.9968 \).

Key Words : Galgeun-tang, Fermentation, Lactobacillus plantarum, HPLC-DAD, Calibration Curves

INTRODUCTION

Galgeun-tang (GGT) is a Korea traditional herbal decoction used for the treatment of fever, cold, asthma, inflammation, and hives in Korea. Fermented herbal medicines can be made more effective than normal herbal medicines by increasing the absorption and bioavailability of the active compounds. In this study, we fermented Galgeun-tang to produce bioconversion constituents using Lactobacillus plantarum (GGT144), and found that four peaks were decreased, three peaks were increased and two new peaks appeared in the HPLC-DAD chromatogram. After HPLC-DAD-guided fractionation of the newly-appearing compounds (1 and 5) and the increased (6, 7, and 9) compounds, the structure of the compounds was determined using NMR and MS. Using this approach the compounds were identified to be pyrogallol (1), daidzein (5), liquiritigenin (6), cinnamyl alcohol (7), and formononetin (9), respectively. In addition, the decreased compounds were identified to be daidzin (2), liquiritin (3), ononin (4), and cinnam aldehyde (8) using HPLC-DAD analysis with standard compounds. The high performance liquid chromatography method was used to quantify the nine constituents in GGT and GGT144. All calibration curves of the standard compounds displayed excellent linearity with a \(R^2 > 0.9968 \).

Key Words : Galgeun-tang, Fermentation, Lactobacillus plantarum, HPLC-DAD, Calibration Curves
Lactobacillus plantarum 발효에 의한 갈근탕의 생물 전환 성분 연구

reported that the isoflavones in aglycone-rich fermented soy were absorbed faster and in greater amounts than those of glucoside-rich soy in postmenopausal Japanese women (Okabe et al., 2011). During fermentation of Green teas, GABA is highly increased by irreversible α-decarboxylation of L-glutamic acid, catalyzed by glutamic acid decarboxylase (GAD) (Hui et al., 2011).

Research on fermented medicinal plants or prescriptions has recently increased, however, very few studies have examined the compositional changes of Galgeun-tang fermented with L. plantarum sp. and one Bifidobacterium sp., were used for the fermentation of Galgeun-tang. Among the fermented GGT, the one fermented by L. plantarum (GGT144) showed the most remarkable compositional changes as analyzed by HPLC-DAD when compared to unfermented Galgeun-tang. Therefore, we analyzed the compositional changes of Galgeun-tang fermented with L. plantarum (GGT144) relative to conventional Galgeun-tang using a HPLC-DAD system and various chromatographic isolation techniques. In this paper, we report the bioconversion compositions of fermented Galgeun-tang (GGT144), which was analyzed using HPLC-DAD, MS, and NMR.

MATERIALS AND METHODS

1. General experimental procedures

The NMR spectra were obtained using an INOVA 600 and INOVA 400NB (Varian Co., USA), and low-resolution JMS-600W FAB-MS (JEOL Co., Japan). The analytical and semi-preparative HPLC data were obtained using a L-2130 pump, L-2200 auto-sampler, L-2350 column oven, L-5200 fraction collector, and L-2455 diode array UV/VIS detector (Elite Lachrom HPLC system, Hitachi Co., Japan). The semi-preparative HPLC columns used were OptimaPak C18 (4.6 mm × 250 mm, 5 µm, RS tech Co., Korea), Agilent prep-C18 (21.2 × 250 mm, 10 µm, Agilent Co., USA), and Agilent prep-Si (21.2 × 250 mm, 10 µm, Agilent Co., USA). For analysis of bioconversion constituents, an OptimaPak C18 column (5 µm, 100 Å, 4.6 mm × 250 mm, RS tech Co., Korea) was used and the DAD UV wavelength was 198, 250, 275, and 290 nm. The mobile phase consisted of water and acetonitrile with a gradient elution at a flow rate of 1.0 mL/min (Table 1). The column temperature was maintained at 40°C. The injection volume of the samples was 10 μL. Open column chromatography was performed using C8 powder (YMC*Gel ODS-A, particle size 75 µm, YMC Co., Ltd., Japan).

2. Materials and reagents

The root of Pueraria lobata (Korea), stem of Ephedra sinica (Korea), bark of Cinnamomum cassia (Vietnam), root of Paeonia lactiflora (Korea), root of Glycyrrhiza glabra (Vietnam), root of Zingiber officinale (Korea), and fruit of Zizyphus jujuba (Korea) were purchased from the Korea Medicine Herbs Association (Yeongcheon, Korea). Daidzin and liquiritin were purchased from Wako Pure Chemical Industries, Ltd (Japan). Cinnamaldehyde and ononin were purchased from Sigma Chemical Co. (USA). HPLC grade solutions, water, metanol, and acetonitrile, were purchased from J.T. Baker Co. (USA).

3. Materials and reagents

The root of Pueraria lobata (Korea), stem of Ephedra sinica (Korea), bark of Cinnamomum cassia (Vietnam), root of Paeonia lactiflora (Korea), root of Glycyrrhiza glabra (Vietnam), root of Zingiber officinale (Korea), and fruit of Zizyphus jujuba (Korea) were purchased from the Korea Medicine Herbs Association (Yeongcheon, Korea). Daidzin and liquiritin were purchased from Wako Pure Chemical Industries, Ltd (Japan). Cinnamaldehyde and ononin were purchased from Sigma Chemical Co. (USA). HPLC grade solutions, water, metanol, and acetonitrile, were purchased from J.T. Baker Co. (USA).

4. Preparation of Galgeun-tang (GGT)

The root of P. lobata (400 g, 32.0%), stem of E. sinica (200 g, 16.0%), bark of C. cassia (150 g, 12.0%), root of P. lactiflora (150 g, 12.0%), root of G. glabra (100 g, 8.0%), root of Z. officinale (50 g, 4.0%), and fruit of Z. jujube (200 g, 16.0%) were prepared in an extractor (Cosmos-600 Extractor, Gyeongseo Co., Inchon, Korea) and diluted 10-fold with water. After refluxing for three hours and cooling, the samples were filtered to produce GGT.

5. Fermentation of Galgeun-tang (GGT144)

The GGT was adjusted to pH 7.0 using 1 M NaOH, and was then sterilized in an autoclave at 120°C for 15 min and cooled to

<table>
<thead>
<tr>
<th>Table 1. Mobile phase condition of chromatographic separation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (min)</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>80</td>
</tr>
</tbody>
</table>

250 ㎜ 250 ㎜ 100 Å, 4.6 ㎜, 10 ㎛, 5 ㎛, RS tech Co., Korea, Agilent prep-C18 (21.2 × 250 mm, 10 µm, Agilent Co., USA), and Agilent prep-Si (21.2 × 250 mm, 10 µm, Agilent Co., USA). For analysis of bioconversion constituents, an OptimaPak C18 column (5 µm, 100 Å, 4.6 mm × 250 mm, RS tech Co., Korea) was used and the DAD UV wavelength was 198, 250, 275, and 290 nm. The mobile phase consisted of water and acetonitrile with a gradient elution at a flow rate of 1.0 mL/min (Table 1). The column temperature was maintained at 40°C. The injection volume of the samples was 10 μL. Open column chromatography was performed using C8 powder (YMC*Gel ODS-A, particle size 75 µm, YMC Co., Ltd., Japan).
37°C. The GGT was fermented by the inoculation of 167 mL of *L. plantarum* KFR1144 (1 × 10^6 CFU/mL). Pure cultures of *L. plantarum* were obtained from the Korea Food Research Institute (KFR1). Before experimental use, the bacterial strain was incubated in 50 mL of MRS medium (Difco™ Lactobacilli MRS Broth, Becton Dickinson and Company, Hunt Valley, MD, USA) at 37°C overnight. The GGT was fermented with *L. plantarum* at 37°C for 48 h and then filtered through a 0.65-μm nylon net filter (Millipore, Billerica, MA, USA), lyophilized, and stored in desiccators at 4°C before use.

6. Preparation of standard solutions and samples

Each standard solution was prepared by dissolving standard compounds (daidzin, liquiritin, cinnamaldehyde, and ononin) in 100% methanol at a concentration of 250 μg/mL. To prepare the analytical samples, the GGT and GGT144 powder was weighed and dissolved in 100% H2O at a concentration of 20 mg/mL. Prior to analysis, the sample preparation was filtered through a 0.45 μm filter.

7. Solvent fractionation of GGT144 and isolation of bioconversion constituents

The GGT144 (16 L) was partitioned with equal volumes of EtOAc and n-BuOH, successively. All of the fractions were evaporated to dryness, giving EtOAc (15 g), n-BuOH (60 g), and water (340 g) soluble fractions. Ethyl acetate fraction (15.0 g) was subjected to C18 flash column chromatography (100% H2O, 20%, 40%, 60%, 80, and 100% MeOH) to produce seven fractions (F1-F7). F1 (1.2 g) was purified using C18 open column chromatography with 100% H2O to produce 1 (30 mg). F5 (5.0 g) was purified using C18 flash column chromatography (60% MeOH) to produce seven fractions (F51-F57). F53 (2.0 g) was isolated using C18 open column chromatography with 55% MeOH and purified by semi-preparative Si HPLC (chloroform/methanol, 20:1) to afford 5 (12 mg). F54 (1.0 g) was isolated by C18 open column chromatography with 50% MeOH and purified using semi-preparative Si HPLC (chloroform/methanol, 30:1) to produce 6 (4 mg). F56 (1.0 g) was isolated by C18 open column chromatography with 55% MeOH and purified using semi-preparative Si HPLC (n-hexane/EtOAc, 7:1) to afford 7 (20 mg). F6 (3.0 g) was purified using semi-preparative C18 HPLC (60% MeOH) repeatedly to produce 9 (1 mg).

Pyrogallol (1): White powder; EI-MS m/z 126 [M]+; 1H-NMR (DMSO-d6, 400 MHz) δ 6.30 (2H, d, J = 8.4 Hz, H-3, 5), 6.48 (1H, dd, J = 8.4, 7.6 Hz, H-4); 13C-NMR (DMSO-d6, 100 MHz) δ 134.5 (C-1), 147.7 (C-2, 6), 108.5 (C-3, 5), 119.8 (C-4).

Daidzein (5): Yellow powder; EI-MS m/z 254 [M]+; 1H-NMR (DMSO-d6, 600 MHz) δ 8.34 (1H, s, H-2), 8.03 (1H, d, J = 8.4 Hz, H-5), 7.45 (2H, d, J = 8.6 Hz, H-2′, 6′), 7.00 (1H, dd, J = 8.4, 2.4 Hz, H-6), 6.93 (1H, d, J = 2.4 Hz, H-8), 6.87 (2H, d, J = 9.0 Hz, H-3′, 5′); 13C-NMR (DMSO-d6, 100 MHz) δ 153.5 (C-2), 123.1 (C-3), 175.4 (C-4), 127.9 (C-5), 115.8 (C-6), 163.2 (C-7), 102.7 (C-8), 157.8 (C-9), 117.3 (C-10), 124.1 (C-1′), 130.7 (C-2′), 115.6 (C-3′), 157.8 (C-4′), 115.6 (C-5′), 130.7 (C-6′).

Liquiritigenin (6): Yellow powder; EI-MS m/z 256 [M]+; 1H-NMR (CD3OD, 600 MHz) δ 2.70 (1H, ddd, J = 16.8, 3.0, 1.8 Hz, H-3a), 3.07 (1H, ddd, J = 16.8, 13.2, 1.8 Hz, H-3b), 5.39 (1H, dd, J = 13.2, 2.4 Hz, H-2), 6.37 (1H, d, J = 1.8 Hz, H-8), 6.52 (1H, dd, J = 9.0, 1.8 Hz, H-6), 6.84 (2H, d, J = 8.4, 1.8 Hz, H-3′, 5′), 7.34 (2H, d, J = 8.4 Hz, H-2′, 6′), 7.75 (1H, dd, J = 8.4, 1.4 Hz, H-5); 13C-NMR (CD3OD, 100 MHz) δ 43.8 (C-3), 79.8 (C-2), 102.6 (C-8), 110.5 (C-6), 113.7 (C-10), 115.1 (C-3′, 5′), 127.8 (C-2′, 6′), 128.7 (C-5), 130.1 (C-1′), 157.8 (C-4′), 164.4 (C-9), 165.6 (C-7), 192.4 (C-4).

Cinnamyl alcohol (7): Colorless oil; EI-MS m/z 134 [M]+; 1H-NMR (CD3OD, 600 MHz) δ 7.39 (2H, d, J = 7.3 Hz, H-2, 6), 7.28 (2H, dd, J = 7.3, 7.3 Hz, H-3, 5), 7.19 (1H, dd, J = 7.3, 7.3 Hz, H-4), 6.59 (1H, d, J = 15.8 Hz, H-7), 6.35 (1H, d, J = 15.8, 5.6 Hz, H-8), 4.22 (2H, d, J = 5.6 Hz, H-9); 13C-NMR (CD3OD, 100 MHz) δ 137.2 (C-1), 130.4 (C-7), 128.7 (C-4), 128.4 (C-3, 5), 127.3 (C-8), 126.2 (C-2, 6), 62.5 (C-9).

Fonrononetin (9): Yellow powder; ESI-MS m/z 268 [M]+; 1H-NMR (DMSO-d6, 400 MHz) δ 3.74 (GH, s, OCH3), 6.83 (1H, d, J = 1.8 Hz, H-8), 6.90 (1H, dd, J = 9.0, 1.8 Hz, H-6), 6.95 (2H, d, J = 9.0 Hz, H-3′, 5′), 7.47 (2H, d, J = 9.0 Hz, H-2′, 6′), 7.93 (1H, d, J = 9.0 Hz, H-5), 8.30 (1H, s, H-2); 13C-NMR (DMSO-d6, 100 MHz) δ 153.8 (C-2), 124.9 (C-3), 175.3 (C-4), 128.0 (C-5), 115.8 (C-6), 163.2 (C-7), 102.8 (C-8), 158.1 (C-9), 117.2 (C-10), 123.8 (C-1′), 130.7 (C-2′), 114.2 (C-3′), 158.1 (C-4′), 114.2 (C-5′), 130.7 (C-6′), 55.8 (OCH3).

RESULTS AND DISCUSSION

Five bioconversion constituents (1, 5, 6, 7, and 9) were isolated and purified from Galgeun-tang fermented with *L. plantarum* KFR1144. Two of the compounds (1 and 5) were newly appeared, three (6, 7, and 9) had higher intensities and four (2, 3, 4, and 8) had lower intensities after fermentation. Four constituents (2, 3, 4, and 8) with decreased intensities were analyzed and...
compared with standard compounds. All of the compounds (1-9) in GGT and GGT144 were then quantitatively analyzed (Table 2 and 3). The HPLC-DAD analysis conditions were successfully established to separate the GGT and GGT144 peaks (Fig. 1-4.). Four decreased peaks were observed at retention times of 20.15, 22.27, 27.02, and 33.67 min, three increased peaks were observed at 29.00, 30.07, and 36.24 min, and two newly appearing peaks were observed at 7.14 and 28.38 min.

To isolate the peaks with increased intensities and the newly appearing peaks, GGT144 in water was partitioned with EtOAc, followed by n-BuOH. The EtOAc, n-BuOH, and water fractions were analyzed by HPLC-DAD and all of the increased peaks, newly appearing and decreased peaks were found in the ethyl acetate fraction. HPLC-DAD-guided fractionation of the EtOAc fraction produced five pure compounds, and their structures were identified by MS, 1H-, and 13C-NMR and compared with published data (Kinjo et al., 1987; Pouchert and Behnke J, 1993a; Pouchert and Behnke, 1993b; Kanakubo et al., 2001; Choi et al., 2010).

The newly-appearing constituents at 7.14 and 28.38 min were identified as pyrogallol (1) and daidzin (5). The increased constituents at 29.00, 30.07, and 36.24 min were determined to be liquiritigenin (6), cinnamyl alcohol (7), and formononetin (9). The decreased constituents at 20.15, 22.27, 27.02, and 33.67 min were identified as daidzin (2), liquiritin (3), ononin (4), and cinnamaldehyde (8) by comparison with the retention time (tR) and DAD spectra of standard compounds.

Pyrogallol (1, tR 7.14 min, Fig. 4.) and daidzin (5, tR 28.38 min, Fig. 2.) newly appeared in GGT144 (11.582 µg/mL) and GGT144 (30.07 mg/mL) when compared to GGT (4.136, 6.434, and 30.07 mg/mL in GGT, Fig. 2.), decreased by approximately 42.9% (57.026 µg/mL). Since glycoside of 5, daidzin (2, tR 20.15 min, 99.917 µg/mL in GGT, Fig. 2.), decreased by approximately 42.9% (57.026 µg/mL), compound 5 was assumed to be produced from daidzin (2). Glycosides of pyrogallol (1) were not detected in GGT.

Liquiritigenin (6, tR 29.00 min, Fig. 1.), cinnamyl alcohol (7, tR 30.07 min, Fig. 2.), and formononetin (9, tR 36.24 min, Fig. 2.) were remarkably increased in GGT144 (45.856, 34.830, and 5.445 µg/mL) when compared to GGT (4.136, 6.434, and 0.232 µg/mL), while liquiritin (3, tR 22.27 min, Fig. 1.), cinnamaldehyde (8, tR 33.67 min, Fig. 3.), and ononin (4, tR 27.02

Table 2. Standard curves and R^2 value of 1-9.

<table>
<thead>
<tr>
<th>Components</th>
<th>Retention time (tR, min)</th>
<th>GGT (µg/mL)</th>
<th>GGT144 (µg/mL)</th>
<th>Ratio^a (µg/mL)</th>
<th>Ratio^a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrogallol (1)</td>
<td>7.14</td>
<td>0.000</td>
<td>11.582</td>
<td>+11.582</td>
<td>Newly appeared</td>
</tr>
<tr>
<td>Daidzin (2)</td>
<td>20.15</td>
<td>99.917</td>
<td>57.026</td>
<td>−42.891</td>
<td>−42.9</td>
</tr>
<tr>
<td>Liquiritin (3)</td>
<td>22.27</td>
<td>37.105</td>
<td>11.409</td>
<td>−25.696</td>
<td>−69.3</td>
</tr>
<tr>
<td>Ononin (4)</td>
<td>27.02</td>
<td>20.316</td>
<td>5.706</td>
<td>−14.610</td>
<td>−71.9</td>
</tr>
<tr>
<td>Daidzein (5)</td>
<td>28.38</td>
<td>0.000</td>
<td>27.925</td>
<td>+27.925</td>
<td>Newly appeared</td>
</tr>
<tr>
<td>Liquiritigenin (6)</td>
<td>29.00</td>
<td>4.136</td>
<td>45.856</td>
<td>+41.720</td>
<td>1008.7</td>
</tr>
<tr>
<td>Cinnamyl alcohol (7)</td>
<td>30.07</td>
<td>6.434</td>
<td>34.830</td>
<td>+28.396</td>
<td>441.3</td>
</tr>
<tr>
<td>Cinnamaldehyde (8)</td>
<td>33.67</td>
<td>76.572</td>
<td>27.186</td>
<td>−49.386</td>
<td>−64.5</td>
</tr>
<tr>
<td>Formononetin (9)</td>
<td>36.24</td>
<td>0.232</td>
<td>5.445</td>
<td>+5.213</td>
<td>2247</td>
</tr>
</tbody>
</table>

^a: peak area, x: concentration (µg/mL)

Table 3. Content of bioconversion constituents (1-9) in GGT and GGT144.

<table>
<thead>
<tr>
<th>Components</th>
<th>Retention time (tR, min)</th>
<th>GGT (µg/mL)</th>
<th>GGT144 (µg/mL)</th>
<th>Ratio^a (µg/mL)</th>
<th>Ratio^a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrogallol (1)</td>
<td>7.14</td>
<td>0.000</td>
<td>11.582</td>
<td>+11.582</td>
<td>Newly appeared</td>
</tr>
<tr>
<td>Daidzin (2)</td>
<td>20.15</td>
<td>99.917</td>
<td>57.026</td>
<td>−42.891</td>
<td>−42.9</td>
</tr>
<tr>
<td>Liquiritin (3)</td>
<td>22.27</td>
<td>37.105</td>
<td>11.409</td>
<td>−25.696</td>
<td>−69.3</td>
</tr>
<tr>
<td>Ononin (4)</td>
<td>27.02</td>
<td>20.316</td>
<td>5.706</td>
<td>−14.610</td>
<td>−71.9</td>
</tr>
<tr>
<td>Daidzein (5)</td>
<td>28.38</td>
<td>0.000</td>
<td>27.925</td>
<td>+27.925</td>
<td>Newly appeared</td>
</tr>
<tr>
<td>Liquiritigenin (6)</td>
<td>29.00</td>
<td>4.136</td>
<td>45.856</td>
<td>+41.720</td>
<td>1008.7</td>
</tr>
<tr>
<td>Cinnamyl alcohol (7)</td>
<td>30.07</td>
<td>6.434</td>
<td>34.830</td>
<td>+28.396</td>
<td>441.3</td>
</tr>
<tr>
<td>Cinnamaldehyde (8)</td>
<td>33.67</td>
<td>76.572</td>
<td>27.186</td>
<td>−49.386</td>
<td>−64.5</td>
</tr>
<tr>
<td>Formononetin (9)</td>
<td>36.24</td>
<td>0.232</td>
<td>5.445</td>
<td>+5.213</td>
<td>2247</td>
</tr>
</tbody>
</table>

^aContents changes of bioconversion constituents after fermentation of GGT
were decreased in GGT144 (11.409, 27.186, and 5.706 µg/mL) when compared to GGT (37.105, 76.572, and 20.316 µg/mL). Therefore, 3, 8, and 4 were assumed to be transformed into liquiritigenin (6, Fig. 1.), cinnamyl alcohol (7, Fig. 2.), and formononetin (9, Fig. 2.).

The original plant of pyrogallol (1) is still not known, and pyrogallol was previously reported to have antitumor (Yang et al., 2009) and antioxidant activity (Park et al., 2007). Pyrogallol (1) was assumed to be produced by the deglycosylation of tannic acid. Nelson et al. and Odeny et al. reported that pyrogallol was the predominant fermentation product of tannic acid and also suggested that pyrogallol was produced by intergallate depside.
Lactobacillus plantarum 발효에 의한 갈근탕의 생물 전환 성분 연구

Linkages and the ester bond between gallate and glucose are both hydrolyzed, resulting in gallate decarboxylation (Nelson et al., 1995; Odenyo and Osuji, 1998). Rodríguez et al. reported that L. plantarum produced pyrogallol through the degradation of tannic acid. In nature, tannins are found in many different families of higher plants (Rodríguez et al., 2008). Based on these previous studies, we deduced that the original plant of pyrogallol was all of the herbs of Galgeun-tang.

Daidzein (5) was assumed to be produced by the deglycosylation of daidzin from the root of P. lobata and was reported to have anti-diabetic effects (Park and Ko, 2006), antitumor properties (Choi and Kim, 2008) and to stimulate osteoblastic bone formation (Sugimoto and Yamaguchi, 2000).

Liquiritigenin (6) was assumed to be produced by the

Fig. 3. HPLC chromatograms of Galgeun-tang (GGT) and fermented Galgeun-tang (GGT144) at 290 nm. 8. Cinnamaldehyde, \(t_R \) 33.67 min.

Fig. 4. HPLC chromatograms of Galgeun-tang (GGT) and fermented Galgeun-tang (GGT144) at 198 nm. 1. Pyrogallol, \(t_R \) 7.14 min.
deglycosylation of liquiritin from the root of *G. glabra*, and was reported to have antibacterial activity (Park *et al*., 2009), antitumor effects (Zhang *et al*., 2009), and neuroprotective effects (Liu *et al*., 2010).

Cinnamyl alcohol (7) was assumed to be produced by the hydrogenation of cinnamaldehyde (8) from *Cinnamomum cassia*, and was reported to have UV-blocking effect (Addo *et al*., 1982).

Cinnamyl alcohol (7) increased by about 441.3% after fermentation, while cinnamaldehyde (8) decreased by approximately 64.5% after fermentation of GGT. This result also indicates that cinnamyl alcohol (7) was produced by the hydrogenation of cinnamaldehyde. Zueca *et al*., reported the biotransformation of cinnamaldehyde to cinnamyl alcohol by alcohol dehydrogenase (ADH) (Zueca *et al*., 2009) and production of cinnamyl alcohol (6) was assumed to occur through hydrogenation by ADH from the *L. plantarum*.

Formononetin (9) was assumed to be produced by the deglycosylation of ononin from the root of *P. lobata*, and was reported to have vasorelaxation (Wu *et al*., 2010), antioxidant, and estrogenic effects (Mu *et al*., 2009).

Izumi *et al*., and Okabe *et al*., reported that soy isoflavone aglycones were absorbed faster and in higher amounts than their glucosides in humans and the bioavailability of the aglycone form of isoflavone was found to be higher than the glycoside form (Izumi *et al*., 2000; Okabe *et al*., 2011). Remarkable bioavailability and bioactivity was also reported in foods and medicinal plants containing bioactive aglycone, such as fermented soybeans (Okabe *et al*., 2011), fermented soymilk...
Lactobacillus plantarum 발효에 의한 갈근탕의 생물 전환 성분 연구

(Kano et al., 2006), and fermented red ginseng (Kim et al., 2010). Kuwaki et al. found that the antifungal activity of fermented herb formulas against tinea was as high as that of a synthetic fungicide (Kuwaki et al., 2002). Kwak et al. reported that the antioxidant activity of Chungkookjang (a Korea fermented soybean paste) was stronger than unfermented steamed soybeans (Kwak et al., 2007). Kitawaki et al. reported that soy yogurt decreased the hepatic triglyceride content in rats (Kitawaki et al., 2009).

In conclusion, because of the production of pyrogallol (1), daidzein (5), liquiritigenin (6), cinnamyl alcohol (7), and formononetin (8) during the fermentation of GGT, GGT144 could be increased antitumor, antibacterial, vasorelaxation, antioxidant, estrogenic, or neuroprotective effect. In addition, it is expected that this study will help to establish quality control parameters for GGT144.

ACKNOWLEDGEMENTS

This study was supported by the “Study on drug efficacy enhancement using bioconversion for herbal medicines” (K11050) project. The authors would like to thank researcher Hak Nam Kim, Tae Jeong Ko, and Keon Cho at the Korea Basic Science Institute for the measurements of NMR and MS spectra.

LITERATURE CITED

Molecular Medicine. 17:279-284.
Lactobacillus plantarum 발효에 의한 갈근탕의 생물 전환 성분 연구

