Si$_3$N$_4$/SiC 복합 세라믹의 온도에 따른 크레이 힐링 관찰과 확산기동

송오성*, 안도 코토지*, 다카하시 코지*, 나가오 와타루*, 류지호**

서울시립대학교 신소재공학과
*요코하마국립대학교 물질에너지기학공학과
**이화여자대학교 자동차계열

Crack Healing Behavior with Healing Temperature in Si$_3$N$_4$/SiC Composite Ceramics

Ohsung Song*, Kotoji Ando*, Koji Takahashi*, Wataru Nakao* and Jiho Ryu**

Department of Materials Science and Engineering, University of Seoul, Seoul 130-743, Korea
*Department of Energy and Safety Engineering, Yokohama National University, 7-5, Hodogaya, Yokohama, Japan
**Division of Automobile, Ajou Motor College, Boryeong 355-769, Korea

(2005년 9월 12일 반, 2005년 11월 9일 최종수정본 반영)

Abstract. To investigate the microcrack healing behavior of Si$_3$N$_4$-20wt%SiC-8wt%Y$_2$O$_3$ composite ceramics (SNCY8), we observe the crack length evolution at the time of 20, 40, 60 minutes with in-situ optical microscopy by varying healing temperature of 800-1200°C. Crack healing obviously occurred as healing temperature and time increased. We proposed a simple model of effective diffusion based on the crack length evolution with healing condition, and determined the effective diffusion coefficient as. Our result implies that we may predict the healing ability quantitatively with temperature and time in structural ceramics through the effective diffusion coefficient model.

Key words crack healing, healing temperature, diffusion coefficient, surface crack.

1. 서 론

Si$_3$N$_4$와 SiC의 복합세라믹은 여러 소결재와 합쳐져서 소결되어 여러 가지 기계적 강도를 요구하는 곳에 구조체로서 사용된다. 이러한 복합세라믹은 내열성이 높으며 우수하여, 열효율을 향상시키기 용이하므로 고온에서 작동하는 원자력 부품이나 자동차 엔진 부품으로 사용되어 왔다. 또한 Si$_3$N$_4$와 SiC의 복합세라믹은 동상의 파괴방정이 작은 세라믹재료에 비해, 크레이 힐링(crack healing) 특성이 있어 장수영화가 가능하다.

즉, 일반적인 세라믹이 할당강도는 높지만 사용 중에 표면부나 내부에서 발생한 크레이가 성장하여 극적으로 파괴에 이르는 메커니즘을 가지고 있어 파괴에 취약한 문제가 있었으나 Si$_3$N$_4$와 SiC의 복합세라믹은 크레이 힐링을 통하여 사용 중의 신뢰성을 확보함으로써 향상될 수 있는 특성이 있다.

크레이 힐링은 마이크로 또는 나노급의 크레이 표면에 발생한 경우, 고온에서 사용 중에 발생한 크레이를 세라믹 재료 내부에 투입된 소결 재료들이 먼저 산화하여 크레이를 매꾸거나, LPS(liquid phase sintering, 액상소결) 물질이 크레이를 효과적으로 매꿀으므로3) 사용 중 자연 힐링되면 사 궁극적으로 크레이가 소멸하거나 작아지면서, 계속 기계적으로 높은 고온 강도를 유지하는 현상이다. 이러한 자연적인 나노마이크로 크레이힐링현상은 여러 구조용 세라믹 조합에서 발견되었는데, N$_2$분위기 에서의 SiC에 Y$_2$O$_3$+CaO를 두운 이온과의 ALN+Er$_2$O$_3$와 Ando 등의 SiC+ mullite, SiC-Si$_3$N$_4$등의 조합에서 혼합현상이 확인된 바 있다.4-6)

이러한 크레이 힐링을 결정적으로 이용하면 기존 고온 구조용 세라믹의 신뢰성(reliability)을 획기적으로 향상시킬 수 있고, 표면 크레이를 없애기 위한 고비용 표면처리 작업을 줄일 수 있으며, 서비스 수행 (life time)의 확장적 인 증가와 기기 유지비용을 개선할 수 있는 장점이 있다.

이와 같은 크레이 힐링을 확인하기 위해서는, 일반적인 토네이로드 토프로 196N 정도의 압력을 가하여 표면에 다이아몬드 압업을 하고 이 압력으로부터 파생된 크레이 힐링을 관찰하여 후 간격적으로 크레이 힐링 시차 전후의 반영 테스트에 의한 스테레스-스트레스 현상의 관찰이 이루어져서 기계적 강도를 확인하는 방법 또는 피로강도(정적표면계 테스트, 동적
피로계의 테스트를 촉선하여 확인하는 방법이 있었다. 그러나 이러한 기계적 촉선 방법은 시료를 제작하는데 매우 많은 시간과 노동력이 필요한 단점이 있어서 좀 더 단시간 내에 저비용으로 비효과적으로 촉선이 가능한 크랙 형성을 정량적 분석방법이 필요한 시점이다.

본 연구에서는 이미 크랙 형성 효과가 있는 것으로 알려진 Si$_3$N$_4$-20wt% SiC-8wt% Y$_2$O$_3$ 소재체의 인위적으로부터 키커스 카트리지를 이용하여 100 µm 길이의 미세크랙을 제작한 후 800-1200°C까지의 온도변화에서 각 온도에서의 힘각시간을 0, 20, 40, 60분 동안 유지하면서 이때의 크랙의 형성 정도를 실시간으로 촉선하여 크랙의 소열과정을 광학현미경으로 확인하면서 크랙 형성이 확산에 의한 현상이라고 가정하여 온도와 시간에 따른 크랙 형성이 가능한 공정 원도우를 예측해 보고자 하였다.

2. 실험 방법

Si$_3$N$_4$-20wt% SiC-8wt% Y$_2$O$_3$의 분말을 혼합하여 준비한 후 3×3×1 mm의 시료를 1500°C-1시간 N$_2$ 분위기에서 소결하여 준비하였다.

준비된 시료를 기계적으로 연마하여 표면을 O$_2$ 플라즈마로 0.10 µm까지 미세 연마한 후 Fig. 1과 같이 시약중심부에 버커스 강도기의 다이아몬드 틱을 이용하여 19.6 N의 압력을 주어 테두리면형 압온을 만들고 압온의 각 코너 부분으로부터 미세 크랙이 발생하도록 하였다. 이때 압온을 포함한 크랙 양단의 전체길이는 약 100 µm 정도임을 확인하였다.

압온이 완성된 시료는 대기 분위기에서 온도와 밸런스에 의한 크랙의 형성은 미세한 Fig. 2와 같은 드수로에 넣고 시간별로 광학 현미경 사진 관찰을 실시하였다. 그림의 오른쪽에 확대하여 나타낸 것과 같이 크랙 부분은 3개각이 평균 압온, 압온 음직이 가해질 수 있으나 본 실험에서는 무응력 상태에서 진행하였다.

온도를 올리면서 진행하는 힘각 처리 공정의 진행은, 힘각온도가 800°C인 경우는 상온소도 조건을 20°C/분으로 유지하면서 목표온도에 도달하여 0, 20, 40, 60분에 각각 광학 현미경 촬영을 실시하였고, 900°C, 1000°C.

1200°C의 목표온도인 경우에는 승온 조건은 45°C/min으로 유지하면서 목표온도에 도달하면서 동일한 방법으로 각각의 온도에서 광학현미경 관찰을 실시하였다.

3. 결과 및 고찰

Fig. 3에는 1000°C의 경우 표시부의 크랙을 중심으로 시간별로 크랙이 변화하는 것을 나타내었다. 그럼에서 보듯이 처음의 압온에 의한 크랙은 시간이 지남에 따라 20 분까지 크랙 길이의 측정이 생가지가 60분이 지나면 압온 근처까지 축소하여 크랙 형성에 관한 연구를 할 수 있다. 따라서 정성적으로는 주어진 힘각 온도에서 시간이 진행됨수록 크랙의 길이가 줄어드는 것을 확인할 수 있다.

한편 힘각이 진행됨에 따라 기지부의 각 구성원들은 특히 SiC입자의 주선 신화에 의해 전체 기지에서 형성된 결정체가 보이고 압온 근처에서는 다이아몬드 틱에 의해 변형된 소형에서 더욱 많은 신화가 진행되어 시간이 더이전 수록 X점의 형성 정도가 높아진 방향으로 성장하였음을 나타내고 있다.

Fig. 4에는 각 온도에서 힘각 처리 전과 60분 힘각 처리 완료 후의 광학현미경 사진을 각각 나타내었다. Fig. 4와 이미지에서 알 수 있듯이 크랙의 길이 변화를 확인하고 특히 압온 자체의 크기 변화로부터 틱 축소 크기 변화를 확인하는 것이 가능하지만 1000°C 이상의 힘각 효과는 열팽창에 의한 SiC와 Si$_3$N$_4$의 신화정도 차이에 따라 SiC가 우선 신화함에 따라 SiC 결정체가 빠지고 특히 힘각 온도가 증가함에 따라 이러한 SiC 결정체가 두께하게 보임을 알 수 있었다.

한편 힘각 온도가 올라가면 압온 부분은 힘각전의 압온 주변의 소형형이 특히 많이 변형하여 조정성으로서 작은 구멍을 광학 현미경 사진으로는 원래의 압온 전제를 형태하기가 매우 어려워지는 문제가 있었다.

따라서 시간에 따른 크랙의 크기변화를 관찰하기 위해

Fig. 1. The illustration of a SNCY8 sintered sample.

Fig. 2. Experimental apparatus of the crack change observation with temperature, time, and pressure.
Fig. 3. Crack healing evolution at 1000°C with anneal time of (a) 0, (b) 20, (c) 40 and (d) 60 minutes.

서는 앞선 자제의 크기의 변화를 확인하는 것보다는 앞선 코너부의 크기의 크기 변화를 확인하는 것이 더욱 용이한 작업임을 알 수 있었다.

Fig. 3과 4에서 알라민 바와 같이 각 항공 온도에서 앞선 코너의 개구부에서 크랙 길이까지의 크랙 길이의 시간 변화에 따른 크랙이 줄어드는 길이의 변화를 측정하여 Table 1과 같이 처음 크랙 길이에서 줄어든 길이를 확인하여 정리하였다.

따라서 Table 1과 같이 크랙 길이의 온도별 변화로부터 크랙의 축소하는 현상을 정량화한 데이터로부터 온도와 시간에 따른 크랙 열링 정도를 예측하기 위하여 Fig. 5와 같은 모델을 가정하여 보였다.

Fig. 5에는 앞선 개구부로부터 크랙이 길이(l)를 가지고 단순하게 삼각형 형상을 유지하며 전파된 것으로 가정하였다. 이 크랙이 열링 열화상에 의해서 축소되는 것은 크랙 열면부로부터 SiC-Si3N4상이 상하 성장하는 두께(x)의 변화로 인해 소실적으로 크랙길이가 k 만큼 작아져서 크랙 열링이 발생한다고 가정하였고 또한 크랙 열면부에서 산화층 확산두께(x)에 의해 크랙의 축소길이(k)가 선형적인 관계를 가진다고 가정하였다.

따라서 이러한 가정에 의해 열델링에 따른 확산 온도에 시간에 따라 크랙의 축소길이(k)는 Eq. (1)과 같은 관계를 가진다.

\[x \propto k \propto \sqrt{Dt} \text{이므로 } k^2 = ax \tag{1} \]

여기서 a는 비례상수이며 D는 확산계수, t는 열델링 처리 시간(SEC)이다.

따라서 만약 Fig. 5와 같은 모델이 가능한다면 실험값에 대한 \(k^2 \)와 t에 대해 그래프를 그리보면 각 온도에서 선형적인 관계를 보이게 된다. 이러한 논의를 확인하기 위해서 Fig. 6에는 각 온도의 \(k^2 \) 시간(t)에 대해 폴로한 결과를 나타내었다. 추세선으로 나타낸 바와 같이 각 온도에서 선형적인 관계를 가진다고 판단하였다.

Ando 등\(^{11}\)의 보고에 의하면 본 연구에 사용된 SNCY8 시험의 경우 다음 Eq. (2)와 같은 산화기구에 의해 산

<table>
<thead>
<tr>
<th>Temp(°C)</th>
<th>Initial Crack Length</th>
<th>20</th>
<th>40</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>50</td>
<td>7.1</td>
<td>7.8</td>
<td>8.5</td>
</tr>
<tr>
<td>900</td>
<td>40</td>
<td>4.3</td>
<td>4.7</td>
<td>5.7</td>
</tr>
<tr>
<td>1000</td>
<td>38</td>
<td>8.6</td>
<td>13.6</td>
<td>19.0</td>
</tr>
<tr>
<td>1200</td>
<td>28.4</td>
<td>9.2</td>
<td>14.2</td>
<td>14.2</td>
</tr>
</tbody>
</table>
Fig. 4. Optical micrographs of before and after 60-min healing treatment at the temperatures of (a) 800, (b) 900, (c) 1000, and (d) 1200°C.

Fig. 5. A simple model of crack shrink model: oxidation occurs from the triangle interface.
행되었다는 가정 하에 확산계수를 Eq. (3)과 같이 가정하고 여기서 D_0와 Q를 찾아보았다.

$$D = D_0 \exp\left(-\frac{Q}{RT}\right)$$ \hspace{1cm} (3)

여기서 D_0는 확산기본계수이고 Q는 확산의 활성화에너지, R은 기계상수, T은 절대온도이다. Eq. (1)에 Eq. (3)을 대입하면 Eq. (4)을 얻는다.

$$k^2 = aD_0\exp\left(-\frac{Q}{RT}\right)t$$ \hspace{1cm} (4)

Eq. (4)을 변형하여 D_0와 Q를 얻기 위해 Fig. 7에 나타낸 바와 같이 $\ln(k^2/t)$와 $1/T$를 뽑고 y축 절편에서 D_0를, 기울기로부터 Q를 각각 얻을 수 있어서 성형 외삽을 통한 확인으로부터 $Q=80 \text{ kJ/mol}$, $D_0=0.102732$을 얻었다. 따라서 본 실험에 사용된 SNCY8는 약 80 kJ/mol=1 eV/atom의 활성화에너지가 가진 산화화극에 의해 크랙 협력이 진행되었을 것이라고 생각된다. 이러한 활성화에너지 값은 대부분의 세리믹 재료에서 타당한 값이라 고 판단된다.

반면에 Hou jou 등은 동일한 조건의 시편을 이용하여 수직단면을 관찰하고 이때의 산화막 두께로부터 산화에 필요한 활성화에너지가 24 kJ/mol을 구했 다. 그러나 실제로 200 μm의 노치를 만든 후 각 응도와 시간별로 협력 처리한 후 3절 응력 강도테스트를 하여 노치가 없는 부분과 동일한 강도를 가지는 조건이 맞았다고 가정하여 실험적으로 확산계수를 구한 결과, 협력에 필요한 활성화에너지는 $Q_{\text{eff}}=277$, 또한 동일한 조경의 원형체에서 Y_2O_3의 조성을 3% AIN으로 대체한 경우에는 150을 얻었음을 보고하였다.

이는 실제 실험을 통해 협력 활성화에너지는 단순하게 별도시험에서 산화시킨 후 파괴하여 확인한 활성화에너지는 5-10배의 차이가 남게 되므로, 본 연구가 제한한 비교적 단순한 비파괴적이고 크랙 크기 변화로 추정한 활성화에너지는 2-3배의 차이가 나는 것을 의미하며, 기존의 많은 양의 파괴실험이 필요한 방안에 비해 좀 더 실험량을 단시간 유효한 활성화에너지를 확인할 수 있는 방안이 될 수 있음을 의미한다.

측 크랙이 협력되기 위해서는 Fig. 8에 나타낸 바와 같이 3차원으로 하부까지 동일한 압축력을 가진 크랙이 발생하여 이 파편만 모두가 정직인 확산에 따라서 협력되면서 제거되어야 하므로, 이를 고려한 크랙 협력 정도를 가장 명확히 확인하는 방안은 원자적인 스트레스-스트레인 실험이 동일한 압축으로 하에 협력에 따른 강도변화로부터 얻는 것이며, 반면에 기존의 박크시험을 협력 조건에 따라 산화시키면서 이미의 산화 정도를 확인하여 얻는 간접적인 방안은 실험값과 큰 오차를 가질 수 있다.

반면에 본 연구에서 제한한 표면 크랙의 변화로부터의
4. 결론

구조용 재료인 8%Y2O3가 소결체로 첨가된 Si3N4/SiC 복합세라믹에서 800~1200°C 사이의 크레 혼행 효과를 시간에 따라 광학현미경으로 확인하였다.
1. SNCY8은 각 구성상의 산화 확산기구에 의해 크레 이 매꾸어지는 혼행현상이 발생하였다.
2. 혼행과 시간에 따른 크레 혼행을 정량적으로 예측하기 위해서는 기존의 비크 산화확산에 의해 측정한 것 보다는 본 연구와 같이 혼행조건에 따른 표면부의 크레 길이 변화를 측정하여 얻어진 유효확산 계수의 형태적으로 더욱 측정이 용이하고 현실적인 방안일 수 있었다.
3. 계산된 모델에 의해 얻어진 SNCY8 조성의 시편에서의 혼행 유효확산 계수는 $D_{\text{eff}} = 0.1 \exp\left(-\frac{800 [\text{kJ/mol}]}{RT}\right) [\text{cm}^2/\text{sec}]$으로 결정되었다.