Effect of Ambient Gas to Growth of SiO$_2$ Nanowires by Vapor Evaporation Method

Korea University, Department of Materials Science and Engineering
*Korea Institute of Science and Technology, Metal Processing Research Center
**Korea Institute of Industrial Technology, Advanced Materials Center
***Daejin University, Department of Advanced Materials Science and Technology

(2005년 1월 25일 반의, 2005년 5월 16일 최종수정, 반의)

Abstract Effects of gases to growth of SiO$_2$ nanowires were characterized. N$_2$, Ar, and O$_2$ gas's effect were determined. SiO$_2$ nanowires growth scheme was varied by kind and flow rates of gases because of amounts of O$_2$. Flow rates of gases and kind of substrates affected nanowires' diameters, lengths and morphologies of grown nano wires. With increasing flow rates of gases, nanowire's diameter increased because of additional VS and SLS reactions. By TEM characterization, We knows that, grown SiO$_2$ nanowires on Si substrate showed two shell structures. These shapes of nanowires were formed by reaction of additional SLS growth. Grown SiO$_2$ nanowires showed blue luminescence by PL characterization. These Blue luminescence was due to quantum confinement effect and oxygen vacancies in the nanowires.

Key words SiO$_2$ nanowire, SiO$_2$ nanowire, ambient gas.

1. 서 론

이산화규소 나노와이어는 독특한 물리적 특성과 규소 나노와이어와의 적합성 때문에 최근에 활발한 연구가 이루어지고 있는 나노재료이다.1,2) 최근에는 광소자료의 활용성 때문에 규소 나노결정과3) 나노와이어의 연구가 이루어지고 있으며, 독특한 재생발전기상과 반도체의 이동 현상이 관찰됨에 따라 차세대 광학소자 및 scanning near field optical microscope의 high resolution optical head과 사용이 기대되고 있다.4,5)

나노와이어의 제조연구는 탄소나노튜브의 제조와 유사한 방법으로 시작되었으며, 다량의 제조를 위하여 laser ablation,6) 메타질핵,7) 화학종합법8) 등이 사용되고 있다. 반도체 나노와이어의 제조가 진행됨에 따라서 질량감응, 탄화규소, 화학아연등이 제조가 이루어지고 있으며 이에 따른 성장기구의 연구와 응용연구가 활발히 진행되고 있다.

이산화규소 나노와이어는 laser ablation,9) sublimation10) 등이 대표적인 제조방법으로 알려져 있으며, 최근에는 기판의 나노와이어를 성장시키는 연구가 Wang과11) Pan12) 등에 의하여 이루어졌다. 이러한 다양한 제조방법 중 기상쥐법은13) 기존의 laser ablation과 유사한 방법으로서 나노와이어의 전형적인 성장기구인 VLS (vapor-liquid-solid) 성장기구를14) 이용한다. 기상쥐법은 원료분말을 고온에서 확발시키나노와이어를 기판 위에 성장시킬 수 있는 가장 손쉬운 방법으로서 나노와이어의 성장을 제어할 수 있으며, 고온의 나노와이어를 성장시킬 수 있는 장점이 있다. 대부분의 기상쥐법에서는 불활성 가스인 Ar를 분위기 가스로 사용하고 있다. 상업에서 이루어지는 대부분의 신화물 나노로드의 성장연구에서 추가로 O$_2$를 공급하는 경우가 적으며, 성장방안에는 필요한 산소공급원으로 Ar 가스에 함유되어 있는 산소로 추정하고 있다.11,13)

본 연구에서는 이러한 분위기 가스의 영향을 살펴보기 위하여 N$_2$, O$_2$와 H$_2$ 등의 다양한 분위기 가스를 이용
2. 실험 방법

이산화규소 나노나이어를 성장시키기 위하여 탈화수소를 열원으로 사용하는 슈퍼판상용으로 사용하였다. 반응관으로는 석영관을 사용하였다. 이산화규소의 원료로서 규소(99.999%, 325mesh, Aldrich Co.)와 이산화규소 (99.999%, 325mesh, Junsei Co.)의 혼합물을 사용하였다. 우선 각각의 분말을 1:1 무게 비율로 혼합한 후 ball mill을 사용하여, 720rpm의 속도로 약 2시간 동안 혼합하였다. 연속적인 충폭의 공급을 위하여 금속_LOOP을 발부한 터널로 테이퍼 체결하였다.

\[
\text{Fe(NO}_3\text{)}_2 \cdot 9\text{H}_2\text{O}(99.999\% \text{ Aldrich Co.}) \\
\text{을 isoprophylalcohol에 0.05 mol%의 비율로 용해시켜 혼합액을 만들었다. 제조된 혼합액 안에 규소와 이산화규소 혼합물을 첨가한 후 2시간 동안 혼합하였다. 이런 과정을 통하여 Fe(NO}_3\text{)}_2\text{가 혼합물 원료의 표면에 촘촘히 되고, }
\]

\[
\text{Si(OCH}_3\text{)}_4\text{가 표면에 금속층을 둘러싸고 있는 형태로, }
\]

\[
\text{정확한 산화효과의 계산을 위한 단단성을 제공함으로써 }
\]

\[
\text{가스의 유량을 변화시키며 성장시킨 나노나이어의 형태를 Fig. 2에 나타내었다. Ar 가스의 유량을 증가함수록 상대적인 성장밀도가 증가함을 알 수 있었다. 이러한 경향은 Ar을 10 sccm 사용하여 성장된 이산화규소 나노나이어의 성장 결과의 유사함과 사용된 가스의 종류에 따라 성장된 나노나이어의 성장과 길이가 각각 달라짐을 알 수 있었다. 이러한 경우의 차이를 만드는 주된 원인은 가스의 표면활성과 부분적으로 공급되는 산소와 규소의 차이에 의한 것으로 여겨진다. }
\]

이산화규소 나노나이어는 진행적인 VLS 성장 기구에 의하여 성장된 것을 알 수 있다. VLS 성장기구에서는 역상상태로 존재하는 충폭에 원료물질이 롤링되어 충폭내부로 확산된다. 충폭내부에서 코팅된 후 일정방향으로 성장된다. 본 연구에서는 충폭금속을 수화물 형태로 원료물질에 코팅하여 사용하였다. 표면에 코팅된 금속은 전처리 과정에서 broken bond을 가지게 되며, 매우 미세한 크기로 표면에 촘촘하게 코팅된다. 코팅된 충폭의 두께에 따라 나노나이어의 크기가 결정되며, 계속해서 충폭이 공급되지 않기 때문에 일정한 양만큼 성장할 수 있다. 공급되는 가스의 유량이 변할수록 나노나이어의 성장은 저하하여 이산화규소 가스의 효율이 떨어지게 된다. 공급되는 Ar 가스의 유량이 증가함수록 이산화규소의 효율이 떨어지면서 기판 전체에서 반응을 일으킬 수 있다. 따라서 전체적인 성장밀도는 증가한다. 적은 유량에 있어서는 상대적으로 작지만 성장밀도가 높은 반면에 유량이 120 sccm일 경우에는 휘어진 형태로 성장한다. 나노나이어의 성장은 반응성의 블록이 있는 성장속도의 증가에 따른 불완전한 성장의 영향으로 볼 수 있다. 성장속
도가 증가하면 성장된 나노뇌어의 안정성이 감소하게 되고 따라서 표면과 내부에 결함을 형성하게 된다. 따라서 국부적인 브 현상이 발생한다. 따라서 나선형 성장이 이루어진다. 나노뇌어에서 발생하는 성장의 불균형은 곡선상태의 성장이 가능하게 한다. 유향의 변화는 성장된 나노뇌어의 직경과 길이에도 영향을 미친다.7)

유량의 변화에 따른 나노뇌어의 길이와 직경의 변화를 Fig. 3에 나타내었다. 20 sccm 이상의 Ar가스가 공급된 경우, 길이와 직경의 초기는 거의 관찰되지 않음을 알 수 있었다. 이러한 변화는 사용된 모든 기판에서 일정하게 나타나며, 기판의 종류에 따라 큰 차이를 나타낼 수 있었다. 성장된 나노뇌어의 직경과 길이의 변화는 사용된 가스의 양에 따라 반응의 활성화가 달라지기 때문이다. 공급되는 가스의 양이 증가함수록 반응이 활성화되어 성장속도가 증가한다. 그러나 일정온도에서 유발되는 원료가스의 양은 길이 때문에 일정길이와 직경이 상으로 성장된 후에 길이방향의 성장이 문화된다. 길이 방향의 성장은 성장속도의 증가와 관련이 있으며, 직경의 성장은 표면에서 발생되는 부가적인 VS 반응으로 설명 가능하다.13,14) 20 sccm 이상에서는 유동하는 일산화규소의 양이 증가함으로 성장에 공급되고 난은 양의 가스가 관내에서 계속 존재하게 된다. 따라서 성장된 나노뇌어의 표면에 흡착되어 직경이 증가하게 된다. 20 sccm 이상에서는 성장된 나노뇌어의 길이의 큰 변화는 관찰.
Fig. 3. Variations of length (a) and diameter (b) of SiO$_2$ nanowire with Ar gas flow rates.

재지 않으며, 이러한 성장과정은 성장속도의 과도로 설명할 수 있다. 기판에 따라 성장속도의 차이가 현저하게 나타날 수 있으며, 이러한 현상은 기판의 조성과 기판의 형태이 성장되는 핵생성 피어트의 차이에 따라 분리될 수 있다.

상대적으로 거친 표면을 가진 알루미나 기판을 사용한 경우, (Fig. 2(k)) 120 sccm의 Ar 가스를 사용하였을 때 크게 허전한 형상으로 높은 성장속도를 가지고 성장되었음을 알 수 있었다. 기판의 형성되어 있는 각각의 결정 nhập이 순기는 Fe가 함축되어 핵성을 형성함으로써 밀도가 증가한다. 이는 반대로 석영과 규소기판은 사용한 경우에 상대적으로 성장밀도가 낮을 수 있다. 그 원인은 기판의 표면에 Ar 가스 내에 함유되는 산소에 의하여 수 nm 두께의 비정질 막이 형성되어 Fe 성분의 핵생성을 막기 때문으로 여겨진다. 또한 기판의 부품으로 인한 부분적으로 용융된 각각의 조성이 의해 성장속도가 낮아질 수 있다. Si 기판을 사용한 경우, 구분에서 표면에 존재할 수 있는 용융된 상태의 이산화규소가 막 때문에 성장이 가속화되어 가장 빠른 성장속도를 가짐을 알 수 있었다. 그러나 다른 기판의 경우 표면에 존재하는 산화막 oxide-assisted growth의 가까운 성장에 미치는 주장적인 효과를 통해 가시하게 성장속도가 저하된다고 여겨진다.

분위기 가스가 나노와이어의 성장에 미치는 영향을 살펴보기 위하여 접소를 사용하여 나노와이어의 성장실험 결과를 Fig. 4에 나타냈다. 접소 가스를 사용한 결과, 10–120 sccm까지 모두 나노와이어가 성장되었음을 알 수 있었다. 이러한 결과는 N$_2$ 가스 내부에 불순물로 존재하는 산소가 주된 산소공급원의 하나로 작용하기 때문인다. 본 실험에 사용된Ar 가스에는 (순도 99.999%) 약 0.9 ppm의 산소가 함유되어 있는 반면, N$_2$ 가스를 사용한 경우에는 (순도 99.9%) 약 70 ppm의 산소가 포함되어 있는 것을 확인 할 수 있었다. 이러한 산소양의 차이가 전반에 큰 영향을 주는 것으로 여겨진다. 반면 Ar purging 과정에서 배기되는 산소의 양은 oxygen analyzer를 이용하여 측정한 결과 약 1 ppm 정도의 미량만이 정체됨을 알 수 있었다. 약 100배의 산소가 추가적으로 공급되면서 SiO$_2$와 SiO의 분해가 결합반응이 증가하면서 순잡이 나노와이어가 성장하는 것으로 여겨진다. 99.999%의 순도로 가득 N$_2$ 가스를 분위기 가스로 사용한 경우에는 (산소의 함유량이 0.7 ppm 이하) 거의 성장이 이루어지지 않을음을 확인할 수 있었다.

사용된 기판의 종류와 관련없이 나노와이어가 성장되었으며, 성장된 나노와이어의 형태가 Ar를 사용한 경우와 차이가 있음을 알 수 있었다. 유량이 30 sccm의 경우에서 성장된 나노와이어의 형태는 거의 유사함을 알 수 있으며, 60 sccm과 120 sccm에서 성장된 경우 망막으로 성장된 모습을 관찰할 수 있었다. 이러한 실험 결과가 형성된 원인은 크게 두 가지로 볼 수 있다. 첫 번째는 용융도가 크게 낮아서 성장된 나노와이어가 부분적으로 다시 용융되는 경우이다. 이렇게 부분적으로 용융된 이산화규소가 축적하여 새로운 나노와이어로 성장시켜 brenching 형상을 가지는 경우이다. 두 번째 경우에는 성장된 나노와이어들이 어떠한 원인에 의하여 격침 되고 이러한 교차점에서 국부적으로 운도가 낮아져서 연결된 망상구조를 형성하는 경우이다. 앞서 설명된 두 가지 경 우 중 어느 것이 주된 성장 반응인가는 아직 확실한 결과는 없다. 그러나 Fig. 4(i)와 (j)에서 알루미나 기판을 사용한 경우에 관찰된 나노와이어를 살펴보면, 두 번째 반응의 가능성이 상대적으로 큰 편으로 해석될 수 있다. 이러한 나노와이어들의 경계는 주로 가스의 양의 차이에 의한 것으로 여겨진다. 반응 내부로 초르는 유속이 크게 되기 때문에 성장된 나노과이어가 가스의 활동에 의해 높이란 형상으로 성장한다. 이때 나노와이어가 서로 극복적인 점착이 이루어져 망상구조를 이루는 것
규소 기판을 사용한 경우에서 (Fig. 4(g)) 2종으로 형성된 나노와이어를 관찰할 수 있었다. 초기에 무배향성으로 형성된 나노와이어가 표면에서 매우 밀집된 층을 형성하는 것을 관찰할 수 있었다. 이러한 성장은 two-stage growth의[13,14] 다른 현상으로 간주된다. Two-stage growth에서는 반응가스의 유동성이 밀집구조에 의하여 감소하기 때문에 상대적인 작정의 차이가 발생하는 반면, 이 경우에는 표면에서 형성된 나노와이어가 단계적으로 수평배열 되어있는 것이었다. 이러한 차이는 분위기 가스의 영향으로 보여지며, 대표적인 불활성 가스인 Ar 가스의 경우에는 이러한 현상이 나타나지 않을 수 있었다.

N₂를 사용하여 성장시킨 나노와이어의 작정과 길이의 변화를 Fig. 5에 나타내었다. Ar가스의 경우 (Fig. 3), 유량이 20 sccm 이상이 되면 와이어의 성장속도가 감소하였으나, N₂가스를 사용한 경우 유량이 60 sccm까지 구준히 증가하는 경향을 나타내었다. 이러한 변화는 불활성 가스에 함유되어 있는 O₂의 양과 관련이 깊은 것으로 판단되며, 불활성 기체의 역할을 하지 않고 직접적으로 반응에 영향을 미치는 것으로 여겨진다. 그러나 질소가 반응에 여.getExternal 영향을 미치는 가는 아직 보고된 바가 없으며, 실험적인 실험의 예도 거의 없음을 알 수 있었다. Ar가스를 사용한 경우에 비하여 상대적으로 크게 성장하였다.
Fig. 5. Variations of length (a) and diameter (b) of SiO₂ nanowire with N₂ gas flow rates.

Fig. 6. TEM images and SAED patterns of SiO₂ nanowires grown by vapor evaporation method using N₂ gas. (a), (b) grown on Si substrates at 1200°C, 20hrs, (c), (d) grown on Al₂O₃ substrates at 1200°C, 20hrs, (e), (f) grown on quartz substrates at 1200°C, 20hrs.

앞으로의 연구가 필요하다고 여겨진다. 이러한 성장은 60 sccm 이후에도 나타나며 직경과 길이의 감소가 관찰되었다.

Fig. 6는 N₂가스를 사용하여 성장된 나노와이어의 두 과정비례관계와 성장 특성을 나타낸 것이다. 규소 기판 위 에 성장된 나노와이어의 경우, 독특한 2줄 구조를 가지 고 있음을 알 수 있다. 이러한 구조는 왕단화규소, 왕단화 탄, 탈화규소/이산화규소 나노와이어의 경우에 관찰되었 다. 일부 연구에서 n-p 소자의 제작과, 독특한 전기적 특 성을 얻기 위해 제작하기도 한다. 탈화물과 황화물 나노 로드와 아가인에서 자연적으로 발생되는 경우도 있다.

나노와이어의 성장이 전동체에서 축제의 영향에 의하 여 빨리 성장되고, 표면에서의 양분해 반응이 발생하여 성장이 느리지 때문에 발생될 수 있다. 또한 다른 경우 는 성장이 끝나고 생장과정에서 반응은 내부에 잔류하고 있던 원료가스와 O₂가 일정으로 활성화 되어있는 성장된 나노와이어의 표면에 중합되어 새로운 충이 형성된다. 따라서 내부와 외부에 형성되는 나노와이어의 조성이 다르게 된다.

Fig. 6(a)에서 알 수 있듯이 대부분 직선적으로 성장된 나노와이어 임을 확인할 수 있었다. 성장된 아가인의 정 단부분에 축제가 존재함으로서 나노와이어의 성장이 VLS 성장기구에 따라 성장하였음을 알 수 있었다. Fig. 6(b) 에서 알 수 있듯이 결정된 중심부를 두꺼운 비정질이 감싸고 있음을 알 수 있었다. 삽입된 SAED (selective area electron diffraction) pattern을 통하여 성장된 나노 와이어가 일관적으로 성장된 이산화규소임을 알 수 있었 다. 그러나 다른 기판을 사용한 경우에는 비정질로 성장 되었음을 알 수 있었다. 이러한 차이는 추가적으로 공급 되는 규소에 관련된 것으로 여겨진다. 일반화규소가스 가 기판에 편입되었을 때 조성이 유사한 비정질 SiOx층 에 중락된다. 따라서 고온에서 비정질층이 결정화 되면 서 정합성이 우수하게 보다 대칭적으로 결정적일 가능성이 높아진다. 다른 기판을 사용한 경우에는 정합성
이 적기 때문에 초기에 금속 핵에서 섞을 때 비정질로 성장될 가능성이 높다.

Ar을 분위기 가스로 사용한 경우에는 성장된 나노와이어가 모두 비정질이었으나, N\textsubscript{2} 가스를 사용한 경우에는 결정질이 형성됨을 알 수 있었다. 이러한 차이는 분위기 가스 내부에 포함되어있는 있는 O\textsubscript{2}의 양과 관련된 것으로 생각된다. 이러한 변화는 N\textsubscript{2}가 성장기구에 영향을 미친다는 것을 보여주고 있으며, 좀 더 심도있는 연구가 필요하다고 판단된다.

Shell 형태를 가진 나노와이어가 성장되는 현상에 대하여 최근에 K. Teo가17 새로운 시도를 제안하였다. 이들은 스타일트 template를 사용한 경우에 제한된 것이기 때문에 약간의 핵성상 관련문제에 논의가 있음에도 불구하고, 기본적인 성장기구는 유사함을 알 수 있다. 기본적인 성장과정은 Fig. 7에 나타내었다. 먼저 VLS 성장기구에 따라 내부의 나노와이어가 성장된다. (Fig. 7(a)~(b)) 기관의 표면에 존재하던 이산화규소 다결을 일부를 용해되어 SiO\textsubscript{x} 형태로 성장된 나노와이어의 표면에 확산되어 중잡된다. 이러한 성장과정은 고온공정에 의하여 가속되며 성장된 나노와이어의 표면에 전체적으로 중잡됨 때까지 진행된다. 이러한 성장과정은 SLS (solid-liquid-solid) 성장기구의 핵성상성과 매우 유사하며, 중잡과정은 two-step growth와 매우 유사하다. 비정질함의 성장과 중잡이 동시에 일어날 수 있는 것으로 여겨지며, 식 (1)에 표시된 이산화규소의 분해과정에 의하여 중잡이 활성화 될 수 있다.

\[2\text{SiO}_2 + \text{O}_2 \rightarrow 2\text{SiO} + \text{O}_2 \]

Fig. 6에 나타난 것처럼 앞서 언급한 식에서 나노와이어의 결부면에 존재함으로서 VLS 성장기구에 의하여 성장된 바이어가 촉발할 수 있다. 이러한 현상은 중잡이 성장과정 중에 첫 번째의 CNT의 경우와18 마찬가지로 표면에 노출된 핵층간단한 하나의 핵성상 위치로 작용하여 새로운 나노와이어가 생성되기 때문이다. 이러한 현상은 촉발이 계속적으로 공급되지 않는 CVD 방법에서의 관찰하기 어려우나19 촉발이 연속적으로 공급되는 laser ablation, carbothermal reduction의 경우에는19 쉽게 관찰될 수 있다. 이 실험에서는 원료물질에서 혼합으로 발산된 인산화규소와 함께 Fe 촉매가 계속 공급되므로 분리적데서 breaching 현상이 관찰될 수 있다. 또한 나노와이어가 성장된 단계에서 성장된 두께의 나노와이어가 교차되며 표면에 의해 국부적인 용해와 재결함이 발생될 수 있다. 따라서 Fig. 4에서 보이는 breaching 구조를 만들 수 있다. 대부분의 경우, 결정에서 생성된 새로운 나노와이어의 경우 대부분 촉매의 용접층기에 제한을 받기 때문에 기존의 나노와이어보다 적은 직경을 가진다. Fig. 4에서 관찰된 나노와이어는 거의 유사한 직경을 가지고 있어 접점에 의한 나노와이어의 질립이라는 가능성을 향상한 빛에 제공할 수 있다. 삽입된 SAED pattern을 통하여 성장된 나노와이어의 규모기판에서 성장된 나노와이어에는 달리 비정질임을 확인할 수 있었다.

H\textsubscript{2}, O\textsubscript{2}와 H\textsubscript{2}O\textsubscript{2}를 사용하여 나노와이어를 생성하였으며, 그 결과를 Fig. 8에 나타내었다. O\textsubscript{2}만 공급되는 경우, 외피의 성장이 이루어지거나 직경이 수십~수백 nm 정도로 커질 수 있다. 성장된 외피의 밀도는 유량이 10 sccm일 경우가 가장 높았으며, 유량이 20 sccm 이상일 때 성장밀도와 성장이 비활화되었다. 유량이 10 sccm일 경우, 거리 200-300 nm의 직경을 가진 나노와이어가 생성되었음을 알 수 있으며, 기관에 따라 서로 다른 형상을 가질 수 있었다. 규모 기판을 사용한 경우에 촉간성으로 성장된 반면, 앞두이나 석
영 기관을 사용한 경우, (Fig. 8(b), (c)) 횠테일형성상으로 성장되었음을 확인할 수 있었다. 이러한 형상의 차이가 발생하는 원인은 앞서 설명한 대로, 기관의 차이에서 발생되는 성장기구의 차이에 의한 것으로 여겨진다. 루미나 기관을 사용한 경우에는 net 형태로 성장된 외도가 관찰되었다. N\textsubscript{2}를 사용한 경우와는 다르게 상당히 적은 밀도로 성장되었음을 알 수 있었다. 이러한 형상은 성장과정에서 수많은 표면 결합이 발생된다는 것을 보여주며, 결합에서 새로운 나노와이어의 성장, 즉 brenching 현상이 발생된다는 것을 보여준다. 이 경우, 국부적인 핵 생성과 성장속도가 매우 빠르다는 것을 알 수 있으며, 이는 O\textsubscript{2}가 충분히 공급되기 때문에 성장의 잠복기가 존재하지 않고 직접과 갑이의 성장이 빠르게 일어난다. 따라서 N\textsubscript{2}와 Ar을 사용한 경우에 비하여 큰 직경으로 성장되는 것이 가능하다. 이러한 현상을 통하여 O\textsubscript{2}가 반응에 직접적으로 영향을 주는 것을 확인할 수 있었다. 공급되는 일산화수소와 분해·결합을 함으로서 성장반응에 직접적인 영향을 주는 것을 알 수 있었다. 10 sccm 이 상의 O\textsubscript{2}가 공급이 되면 반응속도가 현저히 감소하게 됨을 알 수 있었다. (Fig. 8(d)-(f)) 성장에 필요한 양보다 많은 양의 산소가 공급되기 때문에 원료분말의 휘발로 공급되는 일산화수소와 이산화수소가 계결합이 이루어지면서 이산화수소 가스와 규소가 생성되면서 반응관 내부의 일산화수소 가스의 분율이 감소하게 된다. 또한 여론
의 산소가 촉매로 공급되는 Fe와 결합하여 순합계 산화 물질성을 형성하기 때문에 촉매로서 역할을 삼한다. 따라서 나노외이의 성장이 일어나지 않거나 느리게 성장이 이루어진다. 이러한 현상은 일반적인 촉매와 가스의 반응에서 발생하는 불활성화 반응과 유사하다고 볼 수 있다. 촉매의 표면에 되는 산화물 막이 반응가스의 흡착을 막기 때문에 나노외이의 성장이 일어나지 않게 되는 것이다.

H₂와 O₂를 동시에 사용한 경우에도 (Fig. 8(g)-(i)) 성장이 거의 이루어지지 않는 것이 알 수 있었다. 이러한 성장은 H₂와 O₂가 일산화수소의 분해에 직접적으로 영향을 주기 때문에 여겨진다. 과일의 O₂가 공급되면서 일산화수소와 직접적인 반응을 통해 이산화수소 가스가 형성되어, 나노외이의 성장이 중단된다. 무기적으로

Fig. 9. PL spectra of SiO₂ nanowires with various substrates and flow rates by vapor evaporation method using N₂ gas. (a) on Si substrate with 10 sccm, (b) on Al₂O₃ substrate with 10 sccm, (c) on quartz substrate with 10 sccm, (d) on Si substrate with 30 sccm, (e) on Al₂O₃ substrate with 30 sccm, (f) on quartz substrate with 30 sccm, (g) on Si substrate with 120 sccm, (e) on Al₂O₃ substrate with 120 sccm, (f) on quartz substrate with 120 sccm.
생성되는 규소 가스는 손쉽게 H₂와 결합하여, Si-H 결합을 형성하게 된다. Si-H 결합을 가진 가스는 나노와이어의 성장에 영향을 끼치고 측면에 막 형태로 증착되어 나노와이어의 성장이 거의 일어나지 않게 된다. 이러한 현상은 일반적인 탄화 규소 나노와이어의 성장에서 발생하는 불활성화 현상과 유사하다.

H₂를 분위기 가스로 사용한 경우에는 성장이 거의 일어나지 않았음을 Fig. 8(i)-(ii)를 통하여 알 수 있었다. 공급되는 일산화규소가 분해 반응을 거치 측면에 홀작되려면 부가적으로 공급되는 O₂가 필요하다. 그러나 H₂ 가스에는 거의 O₂가 함유되어 있지 않아 (0.5 ppm 이하) 홀작반응이 거의 일어나지 않는 것으로 여겨진다. 또한 Si-O 결합보다, Si-H 결합이 형성되기 쉬우므로 Si-H 결합이 형성되어 측면에 원료 가스가 홀작하는 것을 막게 되어 나노와이어의 성장이 거의 이루어지지 않게 되는 것으로 여겨진다.

성장온도와 공급되는 N₂ 가스의 유량의 변화에 따른 PL peak의 변화를 Fig. 9에 나타내었다. Ar 가스를 사용하여 성장시킨 나노와이어의 규모 규소 기판에서 성장된 경우에는 400~420 nm에서, 알루미나 기판을 사용한 경우에는 420, 450 nm에서, 석영 기판에서는 450~500 nm의 낮은 peak가 관찰되었다. 이러한 변화는 관찰된 나노와이어의 미세조각과 밀도가 다르기 때문이다. 성장된 이산화규소 나노와이어에서 발생된 peak는 neutral oxygen vacancy에 의한 것으로 판단된다.

quartz 기판을 사용한 경우, (Fig. 9(c)) 550 nm 부근에서 관찰된 peak는 표면에 형성된 미세한 Si-O 결합을 가진 나노결정에 의해 발생하는 것으로 여겨진다. 이러한 나노결정은 성장이 발생하는 석영기판의 표면에 존재하는 자연산화막의 SiOₓ가 쉽게 옵저브되면서 공급되는 일산화규소의 측면에 반응하기 때문에 나노와이어 성장이 이루어지지 못할 것으로 여겨진다.

공급되는 N₂ 가스의 유량이 증가할 때 규소 기판에서 성장된 나노와이어에서 PL peak의 큰 변화가 존재하는 것을 알 수 있었다. 약 370 nm에서 peak가 관찰되었으며, 이러한 현상은 Fig. 4(g)에서 나타난 2중 구조 플레어 peak가 red shift 되는 것으로 여겨진다. 2중 구조를 형성하면서 성장되기 때문에 매우 높은 성장밀도를 보이고, 개개의 나노와이어의 결합에너지가 증가하기 때문이다. 반면에 120 sccm의 N₂가 공급된 경우, (Fig. 9(g)) 낮은 성장밀도를 가지고 성장되기 때문에 Fig. 9(d)보다 상대적으로 적은 반반응을 나타내었다. 알루미나 기판에 석영 기판에서 성장된 나노와이어의 경우에 큰 변화를 보이지 않았음을 알 수 있으며, 이 이유는 거의 유사한 성장밀도와 형태를 가지기 때문으로 생각된다.

Fig. 9(d), (e)와 (i)에서 약 650~700 nm 내외의 peak가 관찰됨을 알 수 있으며 이 peak의 발생원인은 아직 확실히 밝혀져지 않았으나, 20~30 nm 적경을 가진 Si 나노와이어에서 발생되는 peak와 유사한 이유로 발생되는 것으로 보여진다. 2, 250, 540~550 nm 내외에서 관찰된 shoulder peak는junie등의 연구에서도 발견되었으며, 역시 neutral oxygen vacancy에 의한 현상으로 설명되었으나 아직 명확한 이론이 성립되지 않았다. 결정성의 차이에 따른 PL peak의 반반응의 변화에 관한 검증을 시도하였으나, 아직 뚜렷한 원인을 밝혀내지 못하여 추가적인 연구가 필요하다고 판단된다.

본 연구에서 성장된 이산화규소 나노와이어의 경우, 측정된 정색발광현상은 neutral oxygen vacancy에 의한 것이어서, 아직 비정질 이산화규소에서의 발광기구에 대한 구체적인 이론이 성립되지 않은 상태이다.

4. 결 론

공급되는 N₂ 가스의 유량이 증가함에 따라 규소 기판에서 성장된 나노와이어에서는 PL peak의 큰 변화가 존재하는 것을 알 수 있었다. 약 370 nm에서 peak가 관찰되었으며, 이러한 현상은 Fig. 4(g)에서 나타난 2중 구조 플레어 peak가 red shift 되는 것으로 여겨진다. 2중 구조를 형성하면서 성장되기 때문에 매우 높은 성장밀도를 보이고, 개개의 나노와이어의 결합에너지가 증가하기 때문이다. 반면에 120 sccm의 N₂가 공급된 경우, (Fig. 9(g)) 낮은 성장밀도를 가지고 성장되기 때문에 Fig. 9(d)보다 상대적으로 적은 반반응을 나타내었다. 알루미나 기판에 석영 기판에서 성장된 나노와이어의 경우에 큰 변화를 보이지 않았음을 알 수 있으며, 이 이유는 거의 유사한 성장밀도와 형태를 가지기 때문으로 생각된다.

감사의 글

본 연구는 과학기술부 21세기 포전진도 연구개발사업 인 나노소재기술개발사업단의 지원(과제번호 : 0SK1501-02420)으로 수행되었습니다.
참고 문헌