GaOOH 선구체의 스피크코팅에 의한 GaN 박막의 성장

이재범・김선태†
한밭대학교 신소재공학부

Growth of GaN Thin-Film from Spin Coated GaOOH Precursor

Jaebum Lee and Seontai Kim†
Department of Materials Science and Engineering, Hanbat National University, Daejeon, 305-719, Korea

(2006년 10월 11일 발표, 2006년 12월 14일 최종수정된 발표)

Abstract GaN thin film were grown by spin coated colloidal GaOOH precursor. Polycrystalline GaNs with crystalline size of 10-100 nm were grown on SiO₂ substrate. The shape of crystallite above 900°C had the hexagonal plate and column type. X-ray diffraction patterns for them correspond to those of the hexagonal wurtzite GaN. With increasing droplets, i.e. thickness of deposited layers, XRD intensity increased. PL (photoluminescence) spectrum consisted with a weak near band-edge emission at 3.45 eV and a broad donor-acceptor emission band at 3.32 eV. From the low temperature PL measurement on GaN grown at 800°C that the shallow donor-acceptor recombination induced emission was more intense than the near band-edge excitonic emission.

Key words GaN, GaOOH, precursor, spin coating.

1. 서 론

한편, 액체상태의 선구물질을 사용하는 것은 MOCVD법 또는 HVPE법 등에 비해 간단하게 절취물 박막 제조할 수 있는 장점을 가지며 저기적, 대면적, 대량생산에 적합한 장점을 가져올 수 있다. 따라서 Ga와 N이 함께 들어 있는 액체 상태의 선구물질로서 Ga(N₃)₃NEt₃ (Et=ethyl), Ga(NCN)₃,₆₅ (SiMe₃)₁₂,₂₀Cl₂,₄₅ (Me=methyl) 및 (NH₄)₁₂[Ga (C₆H₅O₂)₃] 등을 사용하여 GaN 박막을 제조하고자 하는 연구가 수행되었다.[10] 그러나 이와 같은 액체 선구물질들은 제조 시간이 많이 소요되고 제조 과정이 복잡하며, 폭발 위험이 높고 연구실에서 소방으로 제조되기 때문에 쉽게 구할 수 없다. 또한 이들 선구물질은 열처리하는 도중에 유기물질이 화학하거나 연소하면서 크기가 서로 다른 결정들이 island-type로 성장된다.[11]

본 연구에서는 Ga를 포함하고 있는 선구물질로서 GaOOH 분말을 미세하게 분쇄하여 폴리드 상태의 용액을 제조하고, 스핀코팅을 이용하여 SiO₂ 기판 위에 도포하여 NH₃와의 반응을 통하여 GaN을 성장하였다.

2. 실험 방법

출발물질인 GaOOH 분말 5g을 미세하게 분쇄하여 용 기에와 10:1의 비율로 혼합한 후 초음파 분산을 통해 폴리드 상태의 선구물질을 제조하였다. 기판으로 사용한 SiO₂는 10×10 mm²으로 절단하여 초음파 제작한 후 스피커에 장착하였으며 기판의 회전수는 2500 rpm으로 고정하였다. 제조된 용액을 SiO₂ 기판 위에 스피크로팅하여 비교적 급격하게 도포하였으며, 도포화수에 따른 GaN의 두께를 조사하기 위하여 도포회수를 1회부터
100회까지로 각각 달리하였다. 선풍물질이 도포된 기판
을 석영판과 석영반응관을 이용하여 전기로의 중심영역
에 위치시키고, N\textsubscript{2}를 주입하면서 전기로의 운도를 승
온시켰다. 반응온도는 800-1150\degree C의 범위에서 변화시켰고,
반응시간은 1 h부터 4 h까지 변화시켰다. 반응가스인
NH\textsubscript{3}는 100 sccm의 유량으로 일정하게 유지시켜 600\degree C
부터 공급하였으며, 반응시간 후에는 성장된 GaN의 분해를
방지하기 위하여 600\degree C부터 N\textsubscript{2} 가스를 공급하면서 상온
까지 냉각시켰다. 전자현미경을 이용하여 기판표면의 상태
을 관찰하였고, 단면시지를 통해 두께를 관찰하였으며, X
선 원자분석기를 사용하여 반응물의 결정구조와 결정
상태를 조사하였다. 또한 성장된 GaN 결정의 광학적
특성은 10 K에서의 PL (photoluminescence) 분광 분석
장치를 이용하여 조사하였다.

3. 결과 및 고찰

Fig. 1은 반응시간과 NH\textsubscript{3}의 유량을 각각 1 h과 100
sccm으로 고정하고 GaOOH 신구물질이 도포된 SiO\textsubscript{2}
기판을 800-1100\degree C에서 각각 열처리하여 얻어진 시편의
SEM images를 나타낸 것이다. Fig. 1(a)에서의 각 각
800\degree C에서 반응하여 얻어진 시편의 표면은 약 0.5-1 \mu m
의 크기를 갖는 결정들이 분포하고 있으며, 반응온도가 증가함에 따라 결정의 크기는 감소하면서 Fig. 1(b)에서
와 같이 결정의 형태는 정육면체적 hexagonal-GaN 형태를
갖는 육각의 광학 및 기동형태를 나타내었다. 반면 Fig.
1(c), (d)에서와 같이 1000\degree C와 1100\degree C에서 각각 열처리
한 시편에서는 크기가 10-100 \mu m의 크기를 갖는 결정으
로 더욱 미세화되었으며 결정의 양도 감소하였다. 이와
같이 GaN 결정의 크기가 특정의 상장조건 이상에서 감
소되는 경향을 나타내는 것은 질화반응으로 생성된 GaN
가 고온에서의 열적분해로 인한 결과로 여겨진다.13-15
 실제로 Sakai 등은16 GaN 분말을 승화시켜 GaN 결정을
상장하는 경우 3시간 이상에서는 결정의 크기가 더 이상
증가하지 않고 오히려 감소하게 됐을 것으로 보아하였으
며, Baranov 등17 GaN 분말로부터 GaN 결정의 초기
상장과정에서는 Ga과 N 화합물 이외에 Ga\textsubscript{3}N\textsubscript{4}, GaO 및
Ga\textsubscript{2}O\textsubscript{3} 등의 화합물과 미세한 Ga 펜이리 등에 의하여 생성
이 되고, 이들 유도 접촉 후에는 GaN 분말의 분해에
의하여 결정이 성장되므로 성장률이 감소한다고 하였다.

Fig. 2는 신구물질의 코팅화수를 달리하여 900\degree C에서
1 h 열처리하여 얻어진 시편에 대한 SEM images를 나
타낸 것이다. 코팅화수가 20 회 이상인 시편의 경우 Fig.
2(a)에서와 같이 기판의 표면에서 관찰되는 결정의 수가
적으며, 결정의 형태가 불규칙적이었다. 반면 코팅화수를
30 회 이상으로 증가시켰을 때 Fig. 2(b)에서와 같이 기
판 전체에 비교적 균일하게 도포되었으며, 코팅화수가 증
가됨에 따라 육각의 광학 및 기동형태를 가진 결정의 크
기와 양이 증가하였다. Fig. 2(d)에서와 같이 100회 코
팅한 시판의 경우에는 결정의 크기가 약 1 \mu m 정도의
크기를 갖는 GaN이 관찰되었다. 즉 기판위에 도포되는
신구물질의 양에 따라 알코나이타 반응하는 GaOOH의 양
이 증가하기 때문에 질화반응으로 인해 생성되는 GaN
의 크기가 증가하는 것으로 여겨진다.

Fig. 1. SEM images of the samples produced by thermal treatment of deposited GaOOH precursor in NH\textsubscript{3} atmosphere at (a) 800\degree C, (b) 900\degree C, (c) 1000\degree C and (d) 1100\degree C.
Fig. 2. SEM images of the samples produced by thermal treatment of deposited GaOOH precursor with coating droplets: (a) 20 times, (b) 30 times, (c) 50 times and (d) 100 times.

Fig. 3. Cross-sectional view of samples at 900°C for 1 h with droplets: (a) 20 times (b) 50 times (c) 100 times.

성장된 GaN의 두께를 관찰하기 위하여 Fig. 2에 보였던 시편에 해당하는 단면 SEM images를 Fig. 3에 나타내었다. 코팅회수를 20회로 하여 열처리한 시편은 Fig. 3(a)에서와 같이 기판과의 경계면이 명확하지 않았다. 그러나 기판에 균일한 분포로 코팅되었던 50회의 코팅회수를 가진 시편의 경우 Fig. 3(b)에서는 기판과의 경계로부터 약 1 μm 정도의 두께를 가지며 결정의 형태와 크기가 일정하였고, 100회의 코팅회수를 가진 시편의 단면의 두께도 약 1 μm 정도이었다. 따라서 50회 이상의 코팅회수에서는 신구물질의 코팅회수와 관계없이 기판에 분포하는 신구물질이 점화방응을 통하여 얇게진 결정의 양과 두께는 일정하며, 코팅회수가 많은 시편밀도 즉 기판 위에 좀 더 조밀하게 분포하는 것을 알 수 있었다.

성장된 GaN의 결정학적 특성을 조사하였다. Fig. 4는 신구물질을 50회 코팅하여 반응시간을 1 h로 고정하고 반응온도를 800~1100°C로 달리하여 열처리한 시편의 X선 조사 자동화 분석기에서 얻은 X선 방출선도를 나타낸 것이다. 2θ=30~40°에서 관찰되는 세 피크는 wurzite-GaN [JCPDS 02-1078]의 (100), (002)
및 (101)면에 정확하게 일치함으로서 각각의 반응온도에서 성장된 결과가 GaN인을 확인할 수 있었다. 모든 온
도범위에서 관찰되는 각각의 화절면의 장도는 900℃의 반
응온도에서 열처리된 시편(Fig. 4(b))에서 가장 높게 나
타났다. 또한 800℃과 900℃에서는 2θ=34.50°에서 관찰
되는 (002) 화절면의 강도가 다른 화절면의 강도에 비
하여 높게 나타났는데, 이는 900℃ 이하의 온도에서 성
장된 GaN 결과가 기저면에 해당하는 (002)면으로 우선
성장하기 때문이다.

Fig. 5에서는 Fig. 4에 관찰된 (002)면에 의한 화절강
도를 규격화하여 나타낸 것이다. 즉, GaOOH 산균물질로
부터 합성된 산균물질의 특성 X선 화절 강도가 시료
에 포함된 투명 성분의 생성량에 관계한다고 가정하면, 900℃의 반응온도에서는 생성되는 GaN 결과의 생성량 및
품질이 개선되었지만, 그 이상의 온도에서는 감소하는 경
향을 보였으며, 이는 고온에서 GaN의 새로운로 설명되
어진다. 13)

Fig. 6은 산균물질의 콘칭회수에 따른 X선 화절도의 변
화를 나타낸 것이다. Fig. 2(a)에서와 같이 결과의 크기
가 작고 조밀하지 않은 결과물질을 가진 시편의 경우에
는 Fig. 6(a)에서와 같이 (101) 화절면에 의한 피크만이
2θ=36.77° 부분에서 약하게 관찰되었다. 반면 콘칭회수
가 증가함에 따라 화절면의 강도는 크게 증가하였으나,
Fig. 3에서 산균물질의 콘칭회수에 따른 단면의 두께가
500와 1000 사이에서 거의 일치한 것처럼 각각 Fig. 6(c)와
(d)에서 관찰되는 X선 화절도의 강도는 크게 변하지 않
았다.

Fig. 7은 800℃에서 1 h 동안 열처리한 시편에 대해
10 K의 온도에서 측정한 PL 스펙트럼을 나타낸 것이다.
스펙트럼은 에너지발 뉴 비대 확장(near band edge; NBE)
과 도너-액시터 쌍(donor-acceptor pair; DAP) 사이의 계
절합에 의한 두 개의 발광밴드가 검출되었으며, NBE의
파도 에너지는 3.45 eV에서 높은 준위의 도너에 속박된 여
기와 관련된 발광 (I2)과 같은 위치하에서 나타났다. 19,20
또한 DAP 발광은 3.32 eV를 중심으로 관찰되었으나 이
와 관련된 LO 또는 북체에 의한 발광은 관찰되지 않았
으며, 깊은 준위에 의한 황색 발광 (2.25 eV 부근) 또한
관찰되지 않았다. 21 한편, DAP 관련 발광의 I2 발광에
비해 크게 나타났으므로 PL 스펙트럼은 불순물이 첨가
된 GaN에서 관찰되는 경우와 비슷한 특성을 보이고 있
는데, 이는 출발물질로 사용된 GaOOH로부터 합성되는

Fig. 5. Normalized intensity for maximum intensity of (002)
plane in Fig. 4.

Fig. 6. X-ray diffraction patterns of the samples produced for
1 h at 900℃ in NH3 flowing : (a) 20 times, (b) 50 times, (c)
and (d) 100 times.

Fig. 7. PL spectra at 10 K from GaN crystals grown for 1 h
at 800℃.
GaN의 결정결합에 산소 원자들이 참여하여 불순물로 작용하기 때문으로 여겨진다.

4. 결 론

본 연구에서는 클로로이드 상태의 GaOOH 신헌물질을 SiO2 기판 위에 스플립팅한 후 암모니아 가스 분위기에 서 열처리하여 GaN막을 성장하였다. 성장된 GaN의 결정구기는 0.1~1 μm 정도의 크기로 분포하며 900℃ 이상의 온도에서 열처리한 시험에서는 육각의 판상 및 이 동 형태의 wurzite-GaN 결정이 관찰되었으며, X선 회절도와 PL 스펙트럼을 통해 성장된 결정이 GaN임을 확인하였다.

Ga을 포함한 클로로이드 상태의 신헌물질을 사용함으로서 기존의 GaN 성장방법에 비하여 보다 간단하게 대면 적의 GaN을 성장할 수 있음을 보였다. 이와 같이 성장된 GaN은 HVPE나 MOCVD를 이용한 고품위의 GaN 성장을 위한 원충층으로의 사용이 기대된다.

감사의 글

본 연구는 2005학번도 현대대학교 교내 학술연구비의 지원을 받았음.

참 고 문 헌