Photoacoustic Laser Doppler Velocimetry Using the Self-mixing Effect of RF-excited CO₂ Laser

Jong-woon Choi and Moon-jong You
Department of Information and Communication, Honam University, Seobongdong 59-1, Gwangyang, Gwangju 506-714, KOREA

Sung-woong Choi
Radio Resources Research Team, Electronics and Telecommunications Research Institute, 161 Gaheong-dong, Yuseong, Daejeon 305-350, KOREA

Sam-young Woo
Mass & Force group, Division of Physical Metrology, Korea Research Institute of Standards and Science, P.O. Box 102, Yuseong, Daejeon 305-340, KOREA

(Received August 18, 2004)

A new laser Doppler velocimeter employing a CO₂ laser has been developed by using its photoacoustic effect. A change in the pressure of a discharge, induced by mixing of a returned wave with an originally existing wave inside the cavity, is employed to detect the Doppler frequency shift. We found that a Doppler frequency shift as small as 50 kHz was detected, and also a good linear relationship between the velocity and the Doppler frequency shift was obtained.

OCIS codes: 140.3470, 140.3410, 230.7400, 120.0120

I. INTRODUCTION

With the invention of the laser in 1960 it was natural that people should start considering measuring the velocity of a material by measure of the 'Doppler effect'. This Doppler effect can be used to measure the velocity of a body which scatters the light.

A laser velocimeter using the Doppler effect domain has been investigated and developed for application in many areas. The LDV utilizes the coherent properties of laser, providing high spatial resolution and fast response measurement. LDVs have been modified to have various configurations for many usages. Among these configurations, the self-mix or optical feedback technique was first introduced by Rudd [1] to measure the Doppler velocity of scattering particles with a He-Ne laser. This technique is attractive for Doppler velocity measurements because the careful optical alignment required by conventional optical heterodyne detection to match the local oscillator and signal modes is not required. The similar technique was studied for LDV using a CO₂ laser by Churnside [2] and a semiconductor laser diode by Shinohara et al. [3]. The extension of optogalvanic methods to radio-frequency and DC excited lasers has been made [4], but is poor in signal to noise ratio because of the high level of plasma discharge noise which then occurs.

In case of an LDV using a CO₂ laser, a liquid nitrogen cooled Mercury Cadmium Telluride (MCT) detector is used to detect a Doppler shifted signal. Since the liquid nitrogen should be replenished in the MCT detector at a predetermined time interval, it has been a disadvantage for field use. The purpose of this paper is to describe the photoacoustic detection method of a Doppler-shifted signal in the self-mixing type CO₂ laser Doppler velocimeter without using an MCT detector.

It is well known that the mixing occurs when light, scattered back from the moving object into the laser cavity, interferes with light inside the laser. This mixing causes a large fluctuation in the laser intensity with Doppler frequency [5], in turn, it makes a similar fluctuation in the pressure of the plasma tube because the pressure increases as the laser intensity increases. Fluctuations in the pressure are called the photoacoustic effect (PA) [6], which is commonly described in terms of a change in gas pressure in response to emission or absorption of radiation. The M. Villagran-Muniz group showed a photoacoustic effect in a CO₂ laser [7].

The photoacoustic effect is based on the generation of acoustic waves in a medium due to interaction of the medium, with modulated or pulsed electromagnetic
radiation. Most of the techniques related to this effect are based on the production of a net macroscopic amount of heat in the medium upon absorption of light, which generates pressure waves that can be detected by means of microphones or ultrasonic transducers [8]. We show here how photoacoustic signals generated in laser discharge can be used for real-time measurement of different frequency in a CO₂ laser Doppler velocimeter (LDV).

II. PRINCIPLE OF MEASUREMENT

It is a well-established fact that electromagnetic radiation scattered by a moving object suffers a change in frequency in proportion to the velocity of the scattering object [9]. When a plane monochromatic wave is incident on a particle moving with velocity \(\vec{u} \) such that \(\vec{u} \) is much less than \(c \), the velocity of light. For a stationary particle the number of wave-fronts striking the particle per unit time \(\nu_i \) would be \(\nu = c / \lambda \). The number of wave-fronts incident upon a moving particle per unit time, i.e. the frequency \(\nu_p \) apparent to the particle is

\[
\nu_p = \frac{c - \vec{u} \cdot \hat{I}}{\lambda_i} \tag{1}
\]

Where \(\nu_i \) is the frequency of the incident light, \(\lambda_i \) is the wavelength of the incident light, \(c - \vec{u} \cdot \hat{I} \) is the velocity difference between the particle and the illuminating wave and \(\hat{I} \) is the unit vector parallel to \(\vec{k}_i \), the wave vector of the incident light.

The wavelength \(\lambda_p \) apparent to the particle is \(\lambda_p = c / \nu_p \). Substituting from equation (1) gives

\[
\lambda_p = \frac{\lambda_i c}{c - \vec{u} \cdot \hat{I}} \tag{2}
\]

For a stationary observer viewing along the direction \(-\vec{k}_s\) the apparent scattered wavelength is

\[
\lambda_s = \frac{c - \vec{u} \cdot \hat{I}}{\nu_p} \tag{3}
\]

Where \(\vec{s} \) is the unit vector parallel to \(\vec{k}_s \), the wave vector of the scattered light. In a similar way, \(\vec{u} \cdot \hat{I} \) represents the component of the particle velocity along the direction \(\hat{I} \), and therefore \(c - \vec{u} \cdot \hat{I} \) is the velocity difference between the moving particle and the scattered light.

Hence the frequency \(\nu_s \) of the scattered radiation is \(\nu_s = c / \lambda_s \). Substituting from equations (2) and (3) we obtain

\[
\nu_s = \frac{c(c - \vec{u} \cdot \hat{I})}{\lambda_i(c - \vec{u} \cdot \hat{s})} \tag{4}
\]

The change in frequency of Doppler shift is given by

\[
\nu_D = \nu_s - \nu_i \tag{5}
\]

For \(|\vec{u}| = c \)

\[
\nu_D = \frac{c(c - \vec{u} \cdot \hat{I})}{\lambda_i} \frac{c - \vec{u} \cdot \hat{s}}{c - \vec{u} \cdot \hat{I} - 1} \tag{6}
\]

Where \(n \) is refractive index of the medium surrounding the scattering particle, \(\lambda_0 \) is the vacuum wavelength of the incident radiation. The light scattered by a moving object is Doppler shifted:

\[
\nu_p = 2n \cos(\theta) / \lambda \tag{7}
\]

where \(\nu_D \) is the resulting Doppler shift, \(\nu \) is the velocity of the moving target, \(\theta \) is the angle between the optical axis and the direction of the velocity of the moving object, and \(\lambda \) is the wavelength of the laser. The fluctuations \(\Delta P \) of the radiation pressure inside the cavity under self mixing conditions can be written as [13]:

\[
\Delta P \propto \cos(2\pi \nu_p t)
\]

and the photoacoustic signal \(S \) can be given by [12]:

\[
S = \frac{1}{2} C \alpha \Delta P
\]

where \(C \) and \(\alpha \) is the cavity constant, and \(\alpha \) is the absorption coefficient.

In order to examine our experimental configuration along with its possibilities, the photoacoustic signal \(S \) as a function of the angle \(\theta \) and the target velocity \(\nu \) was measured.

III. EXPERIMENT

The block diagram of the experimental arrangement is mainly based on the design described in Refs. 4. Figure 1 shows the outline of the present experiment. The laser used in this work was an air-cooled gas circulation type RF excited CO₂ laser. The laser cavity total length was 690 mm, composed of a 10-m radius of curvature gold coated total reflector and a flat ZnSe.
partial reflector. Reflectivity of the output mirror was 70%. It was supplied with a 1:1:3 mixture of CO$_2$N$_2$He gas and typically operated at 30 torr of gas pressure. The electrodes of the RF discharge tube were made of aluminum and had a width of 5 mm and a length of 300 mm. The RF discharge tube is sealed at both ends with ZnSe Brewster windows. The output power and frequency of the RF generator were respectively, 90 W and 83 MHz. The π-matching circuit produced an impedance match between the RF generator and laser cavity, thereby minimizing a reflection of RF power. This laser oscillates in the fundamental transverse mode and in a single longitudinal mode at 10.59 um P(20) line. The maximum output power of 2 W corresponds to efficiency near 15 percent. The relative high efficiency of CO$_2$ lasers enhances the photoacoustic effect.

A 25 mm focal length ZnSe lens is used to focus the laser beam onto a diffuse rotating wheel which was made of aluminum with 40 mm diameter and 10 mm thickness. We attached the wheel to a blade of an optical chopper (SR540). Altering the voltage of the dc motor changes the rotating velocity of the wheel. A photo interrupter is installed on the optical chopper side and a thin blade interrupter is attached to one side of the wheel to calibrate its rotating velocity. A photo interrupter generates one pulse per revolution of the wheel.

A commercial condenser microphone combined with a field-effect-transistor preamplifier is inserted in the laser resonator, which is located at the far end of the RF discharge electrode to protect the microphone from a high intensity RF discharge. The microphone signal is directly processed by a dynamic signal analyzer (SR785). A capacitor was used to couple the microphone signal with a dynamic signal analyzer while blocking the dc bias component of the microphone. Figure 3 is a typical example of Doppler signal obtained by the photoacoustic detection method; 15.1 kHz is the Doppler. The Doppler signal bandwidth is wider than that of the switching noise produced by the power supply. Such a phenomenon can be caused by many reasons including vibrations of the rotation wheel surface and laser speckle. It can be considered to be a Doppler signal bandwidth spread caused by subtle effects on the surface of the target and inside the laser resonator [13]. The spread of the Doppler signal bandwidth negatively affects the precision and uncertainty of the measurement.

The Doppler-shifted frequency f_D was observed by changing the rotating velocity ω of the wheel and/or the angle θ between the direction of the laser beam and that of the rotating velocity. The scattered light on the surface of the wheel is Doppler frequency shifted. The light then reenters the laser resonator and mixed with original light, which is called a self-mixed effect. A laser light strength within the resonator is modulated to difference frequencies of the original light and the scattered light by self mixing. Modulation of light in the resonator caused a change of pressure inside the resonator, whereby a photoacoustic signal varying in response to the laser light strength is generated. When the frequency of photoacoustic signal is measured, the Doppler shifted frequency can be measured.

A relationship between the Doppler frequency and the rotating velocity is plotted in Fig. 4 for the detection of the photoacoustic signal. Due to the mechanical limits of the wheel, the rotating velocity was not constant for low velocity. In order to reduce the measurement error caused by the unstable rotating velocity of the wheel, we employed an averaging function in SR785 to obtain the average value of ten samples. It can be seen that there is a good linear relationship between two variables. A low signal to noise ratio at higher velocity is caused by the attenuation of signal for higher frequencies (~ 50 kHz). It was found that a photoacoustic signal from 0 kHz to 50 kHz is proportional to the velocity of the wheel.

The maximum measurable frequency is expected to be several MHz, because the photoacoustic signal from
laser gas is in the range of $\tau_\alpha \gg 1/f \gg \tau_m$. Here, τ_α is the thermal relaxation time and τ_m is the nonradiative lifetime of the excited energy state of the molecule. While τ_α is on the order of seconds, τ_m is typically $10^{-9} \text{ to } 10^{-8} \text{ s}$ [13,14]. But we measured a maximum photoacoustic signal of 50 kHz, because we used a commercial condenser microphone which has a maximum 20 kHz bandwidth.

We also verified that the frequency depends linearly on the cosine of the angle θ between the velocity and the light beam. For a definite value of ν, the change of frequency with respect to $\cos \theta$ is examined. The relationship observed between frequency range and $\cos \theta$ is in good agreement with Eq. (7) for experimental values of $\nu = 251 \text{ mm/s}$ and $\lambda = 10.59 \mu \text{m}$.

IV. CONCLUSION

We have demonstrated a CO$_2$ laser Doppler velocimeter, which is based on the photoacoustic effect. In comparison with other optical methods, such as using liquid nitrogen cooled MCT detectors to detect the Doppler-shifted frequency, the arrangement of the system is compact enough for many applications. A Doppler-shifted frequency as high as 50 kHz was detected using this method, and a good linear relationship between the Doppler velocity and the Doppler-shifted frequency was obtained. This can be used to determine the velocity of a moving object, and it can be applied to measure frequency variation without using liquid a nitrogen cooled MCT detector.

ACKNOWLEDGMENT

Work supported by Research Center for BioPhotonics of Chonnam University and Honam University.

*Corresponding author : woon@honam.ac.kr

REFERENCES

6. Andrew C. Tum, Rev. of Modern Physics, vol. 58, no. 2, April, 1986.
CUMULATIVE AUTHOR INDEX

December 2004

Ahn, Keun-Ok ⇒ see Kim, Jai-Soon (No.4, 174)
Cheville R. Alan ⇒ “Perspectives on THz Time Domain Spectroscopy”, (No.1, 34)
Cho, Seok-Beom ⇒ see Lee, Jung-Ju (No.4, 168)
Choi, Byeong-Yoon ⇒ see Lee, Jong-Hyung (No.2, 59)
Choi, Heejin ⇒ see Lee, Byoungho (No.2, 72)
Choi, jong-woon / You, Moon-jung / Choi, Sung-woong / and Woo, sam-young “Photosonostic Laser Doppler Velocimetry Using the Self-mixing Effect of RF-excited CO₂ Laser”, (No.4, 188)
Choi, Ki-young ⇒ see Song, Seok Ho (No.1, 6)
Choi, Sung-woong ⇒ see Choi, Jong-woon (No.4, 188)
Chung, Youngchul / and Kim, Soohyun “Design and Analysis of a Widely Tunable Sampled Grating DFB Laser Diode with High Output Power”, (No.1, 13)
Eom, Tae joong ⇒ see Lee, Byeong Ha (No.1, 29)
Felinskyi Georgii ⇒ see Han, Young-Geun (No.4, 156)
Han, Young-Geun / Lee, Sang Bae / and Felinskyi Georgii “Spectroscopic Analysis of Gain Bandwidth in Raman Amplifier with Multiwavelength Pumping Scheme Using Actual Band Model”, (No.4, 156)
Han, Dae-Hyun ⇒ see Lee, Jong-Hyung (No.2, 59)
Ho, Kwang-Chun / and Ho, Kwang-soo “Optical Power Transfer of Grating-Assisted Directional Coupler with Three-Guiding Channels: TM modes Case”, (No.4, 149)
Ho, Kwang-soo ⇒ see Ho, Kwang-Chun (No.8, 149)
Hong, Jisoo ⇒ see Lee, Byoungho (No.2, 65); see Lee, Byoungho (No.2, 72); see Lee, Byoungho (No.3, 115)
Hwang-bo, Seung ⇒ see Kweon, Gyeong-il (No.3, 137)
Itoh Kazuyoshi ⇒ see Watanabe Wataru (No.1, 21)
Jung, Jae-Hoon “Optimal Design of Arrayed Waveguide Grating”, (No.3, 99)
Kim, Cheol-ho ⇒ see Kweon, Gyeong-il (No.3, 137)
Kim, Hye-Kyung ⇒ see Kim, Jai-Soon (No.4, 174)
Kim, Hyo Kyeom ⇒ see Kim, Kwang Taek (No.1, 17)
Kim, Jai-Soon ⇒ see Yi, Seung-Ho (No.3, 132); / yoon, Jin-Kyung / Lee, Ho-Chan / Kim, Hye-Kyung / Lee, Seung-Churl / Lee, Jae-Hyung / and Ahn, Keun-Ok “Optical System Design for Thermal Target Recognition by Spiral Scanning [TRSS]”, (No.4, 174)
Kim, Jong Deog / and Moon, Jong Tae “Spectral Characteristics of 50GHz FSR Etalon for Wide-band DWDM Application”, (No.3, 104)
Kim, Jong-Ryeol “Study of Several Schemes for Internal Wavelength Locker Integraated 10Gbps Electro-absorption Modulated Laser Modules in Metro Dense WDM Applications”, (No.2, 55)
Kim, Joo-Hwan ⇒ see Lee, Byoungho (No.2, 65)
Kim, Kwang Taek / and Kim, Hyo Kyeom “In-line Variable Attenuator Based on the Evanescent Wave Coupling Between a Side-polished Single-mode Fiber and an Index Matched Dielectric Plate”, (No.1, 17)
Kim, Kyung-tae “Comparison of Irregular Quadtree Decomposition with Full-search Block Matching for Synthesizing Intermediate Images”, (No.3, 108)
Kim, Pill-Soo ⇒ see Song, Seok Ho (No.1, 6)
Kim, Soo-Gil "Polarization Phase-shifting Technique in Shearographic System with a Wollaston Prism", (No.3, 122); "Synthesis and Analysis of Optical Transfer Function of the Modified Triangular Interferometer by Two-pupil Synthesis Method", (No.4, 182)
Kim, Soohyun ⇒ see Chung, Youngchul (No.1, 13)
Kim, Sun-Jong ⇒ see Lee, Byeong Ha (No.1, 29)
Kim, Woo-Kyung ⇒ see Lee, Han-Young (No.2, 90)
Kweon, Gyeong-il / Kim, Cheol-ho / and Hwang-bo, Seung “Eigensym of Anisotropic Planar Waveguide”, (No.3, 137)
Kwon, Il-Bum ⇒ see Lee, Jung-Ju (No.4, 168)
Kwon, Kwang-Hee ⇒ see Lee, Dong-Ho (No.2, 83)
Lee, Jung-Ju / Cho, Seok-Beom / and Kwon, Il-Bum “Temperature Compensation of a Fiber Optic Strain Sensor Based on Brillouin Scattering”, (No.4, 168)
Lee, Byeong Ha / Park, Chang-Soo / Kim, Sun-Jong
Lee, Chang-hoon ⇒ see Yi, Seung-Ho (No.3, 132)
Lee, Dong-Ho / Park, Jae-hee / Song, Jae-Won / and Kwon, Kwang-hee “Variable Optical Fiber Attenuator Using Bending-Sensitive Fiber”, (No.2, 83)
Lee, Han-young / Kim, Woo-seok / and Yang, Woo-seok “Optimization of Ti-indiffused LiNbO3 Optical Waveguide for Fiber Coupling”, (No.2, 90)
Lee, Ho-chan ⇒ see Kim, Jai-soon (No.4, 174)
Lee, Hyuek jae / and Won, Yong Hyub “External Optical Modulator Using a Low-cost Fabry-Perot Laser Diode for Optical Access Networks”, (No.4, 163)
Lee, Jai-hyeong ⇒ see Kim, Jai-soon (No.4, 174)
Lee, Jong-hyeung / Choi, Byeong-Young / and Han, Dae-hyun “Analysis of System Performance Degradation Using Sinusoidally Modulated Signal in Optical Fiber Communication Systems”, (No.2, 59)
Lee, Man-seop ⇒ see Sohn, Ik-bu (No.3, 127)
Lee, Sang-bae ⇒ see Han, Yong-Geun (No.4, 156)
Lee, Seung-Churl ⇒ see Kim, Jai-soon (No.4, 174)
Lee, W. K. ⇒ see Moon, H. S. (No.1, 1)
Moon, Jong-tae ⇒ see Kim, Jong Deog (No.3, 104)
Oh, Cha Hwan ⇒ see Song, Seok Ho (No.1, 6)
Oh, Sechan ⇒ see Lee, Byoungho (No.3, 115)
Park, Jae-hee ⇒ see Lee, Dong-Ho (No.2, 83)
Park, Chang-soo ⇒ see Lee, Byeong Ha (No.1, 29)
Park, Jae-hyeung ⇒ see Lee, Byoungho (No.2, 65);
see Lee, Byoungho (No.2, 72); see Lee, Byoungho (No.3, 115)
Shin, Dongwook ⇒ see Song, Seok Ho (No.1, 6)
Shuo-xing du ⇒ see Shin, Seungho (No.2, 79)
Sohn, Kwang-sup ⇒ see Yi, Seung-Ho (No.3, 132)
Sohn, Ick-bu / Woo, Jung-Sik / and Lee, Man-seop “Femtosecond Micromachining Applications for Optical Devices”, (No.3, 127)
Song, Jie-won ⇒ see Lee, Dong-ho (No.2, 83)
Song, Seok Ho / Oh, Cha Hwan / Shin, Dongwook / Won, Hyong Sik / Choi, Ki-young / and Kim, Pill-soo “Bragg Gratings Generated by Coupling of Surface Plasmons Induced on Metal Nanoparticles”, (No.1, 6)
Suh, H. S. ⇒ see Moon, H. S. (No.1, 1)
Sung, Baeckkyoung ⇒ see Yi, Seung-Ho (No.3, 132)
Watanabe Wataru / and Itoh Kazuyoshi “Fabrication of Micro-Photonic Component in Silica Glass with Femtosecond Laser Pulses”, (No.1, 21)
Won, Hyung Sik ⇒ see Song, Seok Ho (No.1, 6)
Won, Yong Hyub ⇒ see Lee, Hyuek Jae (No.4, 163)
Woo, Jung-Sik ⇒ see Sohn, Ik-bu (No.3, 127)
Woo, Sam-young ⇒ see Choi, Jong-woon (No.4, 188)
Yang, Jong-soo ⇒ see Yi, Seung-Ho (No.3, 132)
Yang, Joon-mo ⇒ see Yi, Seung-Ho (No.3, 132)
Yang, Woo-seok ⇒ see Lee, Han-young (No.2, 90)
Yi, Seung-ho / Sung, Baeckkyoung / Lee, Chang-Hoon / Yang, Jong-soo / Yang, Joon-mo / Kim, Jai-soon / and Soh, Kwang-sup “Delayed Luminescence of Biophotons from Plant Leaves”, (No.3, 132)
Yoon, Jin-Kyung ⇒ see Kim, Jai-soon (No.4, 174)
You, Moon-jong ⇒ see Choi, Jong-woon (No.4, 188)
Information for Contributors

Manuscripts should be submitted in English, and the presentation should be as succinct as possible. Manuscripts will be reviewed before decision for publication is made. Those accepted for publication will be edited for conformance to the style of JOSK.

1. Submission
Manuscripts should be sent to Editorial Office of the Optical Society of Korea, Room #811, 635-4 Yeogsam-dong, Gangnam-gu, Seoul 135-703, Korea. Send one original and three copies of the manuscript and one original and three photocopies of each illustration via mail.

2. The Manuscript
Manuscript should be prepared in the following order: the title of the paper, names of authors and their affiliations, abstract, main body of texts, appendix if any, acknowledgements, email address of the corresponding author, references, table captions, tables, figure captions, and figures and photographs. Authors must submit a floppy diskette containing the file of final version of their manuscript along with printed hard copies. The diskette should have a label showing author's name, file name and type of software used. Authors are required to use MS Word (.doc), Hangeul (.hwp), or Tex for composing their manuscripts.

2.1. Title page
The title, author's names, and their affiliations should be typed on the first page.

2.2. Abstract
Every paper should include a brief and informative summary. This should not exceed 200 words.

2.3. OCIS code
A maximum of five OCIS codes should be listed at the end of the abstract.

2.4. Main Body
The main body of the text should start on a new page.

2.5. Acknowledgments
Acknowledgments follow the main text of the paper, and precede the appendix and list of references.

2.6. References
References should be numbered consecutively in the texts, for example:
‘According to the theory [3,4], references are collected at the end of the paper in the following style:’

2.7. Tables and Figures
Tables and Figures should be numbered consecutively in the order of their appearance. They should appear on separate sheets and all captions should be listed on a separate sheet.

3. Publication Charge
The authors are requested to pay the publication charge of the following rates when their paper is accepted.
- ₩30,000 (approximately US$23) per printed page for other formats.
This charge entitles the authors to receive 50 reprints.