Fisheye Lens for Image Processing Applications

Gyeong-il Kweon*

Department of Optoelectronics, Honam University
59-1, Seobong-dong, Gwangan-gu, Gwangju, 506-714, Republic of Korea

Young-ho Choi

Department of Information and Communications Engineering, Honam University
59-1, Seobong-dong, Gwangan-gu, Gwangju, 506-714, Republic of Korea

Milton Laikin

Laikin Optical Corporation
4314 Marina City Drive #930, Marina Del Rey, CA 90292, USA

(Received May 26, 2008 : accepted June 12, 2008)

We have developed a miniature fisheye lens with 190° field of view operating simultaneously in the visible and the near infrared wavelengths. The modulation transfer function characteristic for the visible wavelength is sufficient for a mega-pixel-grade image sensor. The lens also has a fair resolution in the infrared wavelength region. The calibrated f-α distortion is less than 5%, and the relative illumination is over 90%. In consequence, a sharp wide-angle image can be obtained which is uniform in brightness over the entire range of field angles. The real image heights for the visible and the near infrared wavelengths have been fitted to polynomial functions of incidence angle with sub-pixel accuracies. Combined with the near equidistance projection scheme of the lens, this lens can be advantageously employed in various image-processing applications requiring a wide-angle lens.

Keyword: fisheye lens, image processing, equidistance, lens design

OCIS codes: (080.3620) Lens design ; (100.2000) Digital image processing ; (220.0220) Optical design and fabrication

I. INTRODUCTION

Fisheye lenses have a long history of development [1-14]. Their enormous fields of view (FOV) combined with the unavoidable large distortion lead many investigators to seek a means of extracting visually more pleasing images or computationally more convenient images from raw fisheye images. Image processing of fisheye images have been used in various disciplines including robotics [15-16], security and surveillance [17-19], and entertainment [20-21]. Obtaining panoramic images from fisheye images has been particularly popular among photographers as well as others. However, the employed image processing algorithms have been inaccurate. The main cause of inaccuracy has been the poorly defined notion of panorama, and the crude modeling of the image formation process in the fisheye lens.

Fisheye lens based image processing has also been used for virtual touring. In this application, two fisheye lenses each separately having a FOV larger than 180° are employed in back-to-back configuration. Since each fisheye lens captures the view of a hemisphere, two lenses as a whole capture the images of an entire sphere. Then, a perspective normal image can be extracted from the combined image. For such applications, it is critical that the FOV of the fisheye lens be larger than 180°, and the projection scheme of the lens be close to an

*Corresponding author: kweon@honam.ac.kr
equidistance projection scheme.

Figure 1 is a schematic diagram illustrating the projection scheme of a general wide-angle lens. The optical axis coincides with the Z-axis of the coordinate system, and the incidence angle θ_i is measured as a zenith angle. All the rays forming image points on the image sensor plane S are considered to pass through the nodal point N of the lens. The intersection between the optical axis and the image sensor plane S is designated as origin O in Fig. 1. The refracted ray R_r corresponds to the incident ray R_i, and forms an image point P on the image sensor plane S. The radial distance from the origin O to the image point P is the image height r.

The general projection scheme of a lens can be defined as $r = r(\theta)$, where the image height r is a monotonically increasing function of the incidence angle θ. For fisheye lenses, equidistance projection schemes are the most popular projection schemes. If the maximum incidence angle is θ_2, and the corresponding maximum image height is given as r_2, then an equidistance projection scheme can be given as

$$r_{ed}(\theta) = \frac{r_2}{\theta_2},$$

where $r_{ed}(\theta)$ is the image height following an equidistance projection scheme. Then the distortion from the equidistance projection scheme can be defined as

$$\text{distortion}(\theta) = \frac{r_{rd}(\theta) - r_{ed}(\theta)}{r_{ed}(\theta)} \times 100,$$

where $r_{rd}(\theta)$ is the real image height, which can be experimentally measured using an actual (i.e., physically realized) lens.

To apply an image processing algorithm to images obtained using a fisheye lens, the projection scheme of the lens must be known accurately. Provided a complete lens prescription is known, the projection scheme can be theoretically calculated using a dedicated lens design program such as Code V or Zemax. Since lens manufacturers do not normally reveal the lens structure they are offering for sale, researchers have been experimentally measuring the projection schemes of the lens as well as the location of the optical axis in the image (i.e., image center). The experimental determination of the above parameters is a project of its own and considerable literature exists in the fields [22-23]. Furthermore, the experimental methods are highly susceptible to errors and are painstaking.

The purpose of the present article is to provide a miniature fisheye lens with FOV larger than 180° and which has sufficient resolution for a mega-pixel-grade image sensor. Since this lens is particularly targeted for image processing applications, it is intended that the real projection scheme of the lens is provided in as much detail as possible so that the potential investigators using the developed lens need not measure the projection schemes by themselves, thus saving themselves a lot of turmoil.

II. LENS DESIGN

Figure 2 shows the most popular image sensor formats and the desired image size of the fisheye lens under investigation.
the height is 3.6 mm. To obtain more than a hemispherical image using a single fisheye lens, the maximum incidence angle θ_2 has been chosen as 90°, and the corresponding image height r_2 has been chosen as 2.35 mm. This particular choice of figure has been taken so that 180° horizontal FOV is obtained using a 1/3-inch image sensor, while full circle fisheye image can be obtained using a 1/2-inch image sensor.

Figure 3 shows the optical layout of the designed fisheye lens. To keep the number of lens elements low, high index optical glasses were required for the first few lens elements. However, the optical glasses with refractive index higher than 1.8 has been avoided due to its high material cost and difficulty in grinding and polishing. The first two lens elements are actually made of the same glass from Hikari optics corp., namely E-LASF016. This particular glass has a relatively high refractive index of 1.7724, and a moderate Abbe number of 49.61. The mechanical properties of this glass are well known and appropriate for mass production of precision optical parts. The next two lens elements form a cemented optical doublet in order to reduce chromatic aberration. After a fixed aperture optical stop, four more lens elements are followed to form nearly telecentric converging rays toward the image sensor plane. The back focal length of the lens is forced to agree with a typical number for board lenses with Hitachi M12 mount. Particular attention has been paid to avoid a lens element with a shape which is difficult to manufacture. The desirable

![FIG. 3. Optical layout and the ray trajectories for the designed fisheye lens.](image)

<table>
<thead>
<tr>
<th>Surface no.</th>
<th>Comment</th>
<th>Radius</th>
<th>Thickness</th>
<th>Refractive index</th>
<th>Abbe number</th>
<th>Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obj</td>
<td></td>
<td>∞</td>
<td>∞</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Lens 1</td>
<td>29.794</td>
<td>3.801</td>
<td>1.7724</td>
<td>49.61</td>
<td>E-LASF016</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>7.112</td>
<td>3.120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lens 2</td>
<td>37.956</td>
<td>3.089</td>
<td>1.7724</td>
<td>49.61</td>
<td>E-LASF016</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3.798</td>
<td>4.071</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Lens 3</td>
<td>-13.824</td>
<td>2.725</td>
<td>1.7616</td>
<td>26.56</td>
<td>E-SF14</td>
</tr>
<tr>
<td>6</td>
<td>Lens 4</td>
<td>-3.990</td>
<td>0.911</td>
<td>1.6967</td>
<td>55.53</td>
<td>E-LAK14</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>-9.399</td>
<td>4.205</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop</td>
<td>Stop</td>
<td>∞</td>
<td>0.200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Lens 5</td>
<td>5.358</td>
<td>2.011</td>
<td>1.5687</td>
<td>56.34</td>
<td>E-BAK4</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>-4.515</td>
<td>0.390</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Lens 6</td>
<td>-3.527</td>
<td>0.842</td>
<td>1.8049</td>
<td>25.43</td>
<td>E-SF6</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>7.737</td>
<td>0.169</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Lens 7</td>
<td>15.055</td>
<td>1.731</td>
<td>1.6203</td>
<td>60.29</td>
<td>E-SK16</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>-4.574</td>
<td>0.200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Lens 8</td>
<td>8.965</td>
<td>1.539</td>
<td>1.6399</td>
<td>60.09</td>
<td>E-LAK01</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>-20.109</td>
<td>1.986</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>OLPF</td>
<td>∞</td>
<td>3.000</td>
<td>1.5167</td>
<td>64.10</td>
<td>E-BK7</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>∞</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMA</td>
<td>CMOS</td>
<td>∞</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
projection scheme given Eq. (1) has been entered into the merit function operand REAY in Zemax. Another difficult part was ensuring standard manufacturing tolerances while keeping the overall length not excessively long. The optimized design shown in Fig. 3 has tolerances which can be routinely met by the skilled lens makers. The FOV of the optimized lens is 190° with a F-number of 2.8. The complete lens prescription is given in Table 1.

Figure 4 shows the modulation transfer function (MTF) characteristic of the lens in the visible wavelength range. It can be seen that the MTF is over 0.2 at 150 lp/mm for all field angles. Excluding the edges of the images having the full field angle, it is expected that the lens is suitable for multi-mega-pixel-grade image sensor. Figure 5 shows the MTF characteristic for the near infrared wavelength (0.85 ~ 0.94 μm). These particular wavelengths correspond to the most popular center wavelengths of infrared LED illuminators used in security industry. Although the MTF is lower than that for the visible wavelength, still it is good enough for D1 grade image sensor.

Figure 6 shows the calibrated f-θ distortion in the visible wavelength range. This is practically the same as the distortion defined in Eq. (2). As can be seen from the figure, the distortion is less than 5% even at the full field. Considering the FOV of this lens, this figure is considered fair. Figure 7 shows the relative illumination in the visible wavelength range, and it can be seen that the relative illumination at the full field is more than 90% of that at the zero field. Therefore, the resulting image will be very uniform in brightness. The relative illumination for the near infrared wavelength is comparable to this.

Figure 8 shows the physical dimension of the developed lens. The overall length from the first surface to the image sensor is 35.0 mm, and the back focal length is 5.76 mm taking into account a 3 mm thick E-BK7 optical low pass filter (OLPF). The diameter of the lens from the front side is 30.6 mm. This lens is designed as a board lens and has a Hitachi M12 mount. Barrel and spacers are carefully designed so that it neither occludes any ray within the valid range of field angles nor allows any ray outside the range reach the image sensor. Figure 9 shows a cut-away perspective view of the lens, and Fig. 10 is a photograph of a developed fisheye lens.

Figure 11 shows the fisheye lens mounted on a 3M pixel CMOS camera (CMOS Uroria from ViewBits Inc.). The optical axis has been aligned vertical to the
ground using a two-axis electronic level meter. Figure 12 shows the view of the Honam University from a plaza between the university library and the student cafeteria. Figure 13 is a panoramic image obtained from Fig. 12 applying a simple polar-to-rectangular transformation. From Fig. 13, it is obvious that the FOV of the lens is at least larger than 180° since objects below the horizon are captured all around the camera.

Figure 14 is a sample image of an office interior obtained with the optical axis aligned parallel to the ground. Figure 15 shows details of the image from the leftmost edge of the photograph. From the figure, it can be seen that the resolution of the image is limited by the graininess of the pixel from the CMOS image sensor, and not by the resolution of the fisheye lens. Therefore, it can be concluded that the developed fisheye lens has enough resolution for a mega-pixel grade image sensor.
III. REAL PROJECTION SCHEME

As has been said earlier, the real projection of a lens should be known accurately in order to be used in image processing applications. Figure 16 shows the ideal equidistance projection scheme (solid line) described by Eq. (1) and the real projection scheme (dotted line) of the lens obtained using a merit function operand REAY. Figure 17 is the distortion calculated using Eq. (2), and the distortion is less than 5% over the entire field angles.

Figure 18 shows the real projection scheme in the visible wavelength range (solid line) and that in the near infrared wavelength range (dotted line). As can be seen, the discrepancy is not large, but the discrepancy increases as the field angle increases. Figure 19 shows the discrepancy between the two real projection schemes. At the full field, the discrepancy is about 15 μm.
VGA-grade (640×480 pixels) 1/3-inch image sensor has square pixels with each side measuring 7.5 μm. Therefore, the discrepancy can be as large as two pixels. For security camera equipped with infrared illuminator, visible wavelength light will be dominant during the day time, and near infrared wavelength light will be dominant during the night time. Advanced security cameras are equipped with mechanically changeable optical filters. In consequence, infrared is effectively blocked during the day time where average illumination is high. On the other hand, in low light conditions, the optical filter is switched so that the infrared wavelength is allowed to reach the image sensor. For demanding applications, separate image processing coefficients can be used for the day time and the night time.

Figure 20 shows the real projection scheme (dotted line) of the lens in the visible wavelength range and the best polynomial fit (solid line) to the real projection scheme using odd powered polynomial terms given in Eq. (3). Here, the unit of the image height is in millimeters and the unit of incidence angle is in radians.

\[r_{od}(\theta) = a\theta + b\theta^3 + c\theta^5. \]

(3)

The real image heights read from the merit function have been fitted to a polynomial passing through the origin using MatLab. The fitting coefficients are given in Table 2. As can be seen from Fig. 20, the real projection scheme can be well approximated by a polynomial curve passing through the origin. Figure 21 shows the remnant error between the real projection scheme and the best polynomial fit, and the maximum error is less than 2.5 μm.
Considering typical pixel sizes, the fit is already good enough for most applications.

Figure 22 shows the remnant error between the real projection scheme and the best polynomial fit to the curve using both odd and even powered polynomial terms given in Eq. (4).

\[r_{pol}(\theta) = a\theta + b\theta^2 + c\theta^3 + d\theta^4 + e\theta^5. \]

By employing both odd and even powered terms, the discrepancy could be reduced below 0.5 \(\mu \)m. Similar fitting results for infrared wavelength range are given in tables 4 and 5, respectively.

IV. CONCLUSION

In conclusion, we have designed and fabricated a F2.8 fisheye lens with a FOV of 190° operating simultaneously in the visible and the near infrared wavelengths range. The real projection schemes of the lens have been accurately characterized so that this lens can be employed in image processing applications without an error-prone experimental determination stage.

ACKNOWLEDGMENT

This work was supported by the Regional Technology Innovation Program (BPF-2007-R07) of the Ministry of Knowledge Economy (MKE). We would like to thank director Ilmok Kim at Siwon Optical Technology for his enthusiastic assistance in design and manufacturing of the fisheye lens.

REFERENCES

[16] M. Ehtashami, S. J. Oh, and E. L. Hall, "Omnidirec-

