High Power Continuous-Wave and Graphene Q-switched Operation of Er:YAG Ceramic Lasers at ~1.6 μm

Yong Wang1,2, Hao Chen1,2, Deyuan Shen1*, Jian Zhang2, and Dingyuan Tang2

1Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
2School of Physical Science and Electronic Engineering, Jiangsu Normal University, Xuzhou 221111, China

(Received October 30, 2012 : revised December 28, 2012 : accepted January 10, 2013)

We report on high-power continuous-wave operations of an Er:YAG ceramic laser in-band pumped by a cladding-pumped Er,Yb fiber laser at 1532 nm. With an output coupler of 10% transmission, the ceramic laser yielded 16.7 W of continuous-wave output at 1645 nm for 28.8 W of incident pump power, corresponding to a slope efficiency of 61.0% with respect to the incident pump power. The lasing wavelength switched to 1617 nm when output couplers of > 20% transmission were used. Up to 16.2 W of 1617 nm output was generated for 33.0 W of incident pump power, corresponding to a slope efficiency of 51.8%. Graphene Q-switched operation of Er:YAG ceramic laser at 1645 nm was also demonstrated with stable pulses of 30-74 kHz repetition rates and 1.5-6.4 μs pulse widths.

Keywords: Transparent ceramic, Er:YAG, 1.6 μm laser, Graphene, Q-switched operation

OCIS codes: (140.3500) Lasers, erbium; (140.3540) Lasers, Q-switched; (160.3380) Laser Materials; (160.5690) Rare-earth-doped materials

I. INTRODUCTION

Polycrystalline ceramics as laser gain host materials have exhibited numerous advantages over single crystals, such as rapid and large volume fabrication, extreme flexibility in doping concentration, profile and sample structure, etc. [1,2]. Efficient laser oscillation of Nd3+- and Yb3+-doped optical quality YAG ceramics at ~1 μm are now routinely available with essentially the same laser efficiency as single crystals [3, 4]. ~1.6 μm eye-safe wavelength regime lasers based on Er3+-doped gain media have many important applications in remote sensing, free space communications and as the pump source for generating 3-5 μm mid-infrared radiations via nonlinear frequency conversion. In recent years, high performance laser operations at this wavelength region are also demonstrated with ceramic structured Er: Sc2O3, Er:Y2O3 and Er:YAG gain materials [5-10]. Among these differential ceramic hosts, YAG is the most technologically advanced and popular one with spectral and thermo-mechanical robustness. First a composite Er:YAG ceramic laser was demonstrated with ~6.8 W quasi-CW output power and 56.9% of slope efficiency with respect to the absorbed pump power [5]. Later on, both 1645 nm and 1617 nm wavelengths were realized with noncomposite Er:YAG ceramic lasers and the output power was improved up to over ten watt [8-10].

With a linear ε-k relation (Dirac-like) of electron dispersion near the Fermi level, graphene was expected to possess the broad-band saturable absorption characterization. Since first experimental demonstration of mode-locking in erbium fiber laser with graphene as a saturable absorber (SA) [11], graphene has also been successfully employed as SA in Q-switched or mode-locked solid-state lasers with various rare-earth elements doped gain media, e.g. Nd:YAG ceramic [12], Tm:YAG [13], Tm:CLNGG [14] and Er:YAG single crystals [15] etc. and the broadband saturable absorption characterization has been confirmed.

In this paper, we report on power scaling and wavelength switching of cw operation and graphene passively Q-switched operation of an Er:YAG ceramic laser in-band pumped by a cladding-pumped Er,Yb fiber laser at 1532 nm. With an output coupler of 10% transmission, the ceramic laser yielded...
16.7 W of continuous-wave output at 1645 nm for 28.8 W of incident pump power, corresponding to a slope efficiency of 61.0% with respect to the incident pump power. The lasing wavelength switched to 1617 nm when a T=20% output coupler was used, and 16.2 W of output power was generated at this wavelength for 33.0 W of incident pump power, corresponding to a slope efficiency of 51.8%. Graphene Q-switched operation of Er:YAG ceramic laser at 1645 nm was also demonstrated with stable pulses of 30-74 kHz repetition rates and 1.5-6.4 μs pulse widths.

II. EXPERIMENTS

The pump source used in our experiments was a homemade double-clad ~4 m long Er,Yb-doped fiber laser with a 30 μm diameter (0.22 NA) Er, Yb-doped phosphorsilicate core surrounded by a 350 μm diameter pure silica inner-cladding with a nominal NA of 0.49. The fiber was double-end pumped via two beams of roughly equally split power of a high power 976 nm diode laser. Wavelength selection was achieved by employing an external cavity comprising an antireflection coated collimating lens and a volume Bragg grating (VBG) that was designed to have reflectivity of greater than 99% at a center wavelength of 1570 nm. The operation wavelength of the Er, Yb fiber laser was tuned, by changing the incident angle of the VBG, to match the absorption peak of the Er:YAG ceramic at 1532 nm. The laser output spectrum was analyzed using a 0.55 m monochromator with a specified resolution of 0.05 nm at 435.8 nm. Using this arrangement, the Er, Yb fiber laser yielded a maximum output power of 33 W at 1532 nm in a beam with M2<2 for ~160 W of launched pump power at ~976 nm.

Polycrystalline Er:YAG ceramic of 0.5 at% Er3+-doping concentration used in our experiment was fabricated with a reactive sintering method (details can be found in [16] and references therein). The sample was cut and polished to have a dimension of 2×3 mm2 in cross section and 28.4 mm in length, both end faces were antireflection-coated at 1500-1700 nm. The pump absorption fraction under low pump power was measured to be ~98% for a single pass with negligible ground-state bleaching. The sample was then wrapped with indium foil and mounted on a water-cooled copper heat-sink maintained at a temperature of 20°C to allow for efficient heat removal. The laser output from the Er,Yb fiber pump laser was focused to a beam diameter of ~200 μm in the center of the ceramic using a 200 mm focal length lens. The confocal parameter of the pump beam inside Er:YAG was estimated to be ≈36 mm.

The experimental setups of cw and Q-switched operations of ceramic Er:YAG lasers are schematically illustrated in Figs. 1(a) and (b), respectively. For the cw operation, a simple two-mirror cavity design was employed (see Fig. 1(a)). It comprised a plane rear mirror with high reflectivity (>99%) at the lasing wavelength (1600-1700 nm) and high transmission (>96%) at 1532 nm, and a 100 mm radius-of-curvature concave output coupler (OC) of 10%, 20% and 30% transmission at the lasing wavelength and with high reflectivity (>97%) at the pump light. The physical length of the laser resonator was ~45 mm. As shown in Fig. 1(b), the resonator of the graphene Q-switched Er:YAG ceramic laser was constructed with four mirrors into a z-shaped geometry with both folding half angles less than 5°, and the lengths of three arms of the cavity are 110 mm (M1M2), 80 mm (M2M3) and 60 mm (M3M4), respectively. M1 is one and the same plane mirror as the cw operation input coupler and M4 is also a plane mirror with high reflectivity at 1500-1700 nm. The concave mirror M2 had the radius of curvature of 500 mm and was coated with 5% transmission at both lasing wavelengths as the output coupler resulting in twice transmissions in one round trip while mirror M3 had a 100 mm radius of curvature and was coated with high reflectivity at 1500-1700 nm. Chemical vapor deposition (CVD) synthesized multi-layer graphene coated on the surface of the 1 mm thick quartz substrate was used as the saturable absorber and placed near mirror M4.

III. RESULTS

A comparative study was firstly conducted in the low-power pump level for the Er:YAG ceramic laser with three OCs of 10%, 20% and 30% transmission, and the emission spectrum was inspected employing the monochromator after each laser reached the threshold. With the 10%-

![Figure 1](image-url)
Based on the above investigation, laser performance of Er:YAG ceramic lasers were further examined. Fig. 2 shows the output power of the ceramic Er:YAG laser as a function of the incident pump power for 10%, 20% and 30% transmission output couplers. With 10% output coupler, the laser reached threshold at an incident pump power of ~1.5 W and generated a maximum cw output of 16.7 W at 1645 nm under 28.8 W of incident pump power at 1532 nm, corresponding to an average slope efficiency of 61% and an optical conversion efficiency of 58%. The threshold increased to 1.62 W and 2.72 W for 20% and 30% OCs and at the same time the slope efficiency decreased to 51.5% and 47.1%, respectively. By using 20% output coupler, up to 16.2 W of cw output power at 1617 nm was obtained under 33 W of incident pump power, corresponding to an optical conversion efficiency of 49%. Q-switched operation of the ceramic Er:YAG laser was demonstrated at 1645 nm using graphene as the saturable absorber with 30-74 kHz repetition rates and 1.5-6.4 μs pulse widths. Stable pulse train of 368 mW average output power under 3.19 W pump power and 63 kHz repetition rate is shown in Fig. 3(a) and Fig. 3(b) shows a typical pulse with pulse width of 3.36 μs.

We have also examined the graphene passively Q-switched Er:YAG ceramic laser by using the 20% (30%) OC to take the place of M4 and substituting M2 with a 200 mm ROC mirror of high reflectivity at 1500-1700 nm and found it operating at 1645 nm but not at 1617 nm.

IV. DISCUSSION

As a quasi-three-level system (energy levels of Er³⁺ schematically shown in Fig. 4(a)), Boltzmann distribution of Er³⁺ ions in the ground and excited state manifolds favors lasing at 1645 nm rather than 1617 nm when Er³⁺ ions transit from upper laser level |4I13/2⟩ to lower laser level |4I15/2⟩ although there is a higher emission cross section for 1617 nm wavelength (see Fig. 4(b)). Hence, supplemental methods are generally indispensible to produce 1617 nm laser oscillation, e.g. by inserting wavelength discrimination component into the cavity or by operating the laser at cryogenic temperature, resulting in the increase of system complexity and the cost. In fact, direct demonstration of 1617 nm oscillation is also possible via simply increasing the transmission of the output coupler. For 1.6 μm Er³⁺:YAG ceramic laser, the gain cross section \(\sigma_g = \beta \sigma_e \)
\[-(1-\beta)\sigma_e \] (\(\beta = \frac{N_2}{N_1 + N_2} \) is the inversion parameter and \(\sigma_e \) and \(\sigma_a \) are effective emission and absorption cross sections) reached the transparency condition (i.e. \(\sigma_t = 0 \)) at 1645 nm when inversion parameter \(\beta = 9\% \) while it had to generate transmission OC the laser emitted at 1645 nm while the emission wavelength switched to 1617 nm with the 20% and 30%-transmission OCs.
14% population inversion for 1617 nm wavelength [17].
The gain cross section of 1617 nm will surpass that of
1645 nm laser oscillation at 35% inversion, hence, the
lasing wavelength is switchable through modulating the
inversion rate of Er3+ ions in the gain media. Since at
stable cw laser oscillation the round trip gain equals the
whole loss of the resonator, i.e. \(\sigma gNl = \ln(1-T) - \ln(1-L) \) with
T and L representing the transmission of the OC and other
losses besides the transmission respectively, population
inversion of Er3+ ions can be modulated by changing the
transmission of the OC, and then the laser wavelength will
be directly switched by using different transmission OC.

V. CONCLUSION

In conclusion, we report on power scaling for cw mode
and graphene Q-switched operation of a polycrystalline
Er:YAG ceramic laser resonantly pumped by an Er, Yb-
doped fiber laser at 1532 nm. With an output coupler of
10% transmission, the ceramic laser yielded 16.7 W of
continuous-wave output at 1645 nm for 28.8 W of incident
pump power, corresponding to a slope efficiency of 61.0%
with respect to the incident pump power. The lasing
wavelength switched to 1617 nm when a T=20% output
coupler was used, and 16.2 W of output power was
generated at this wavelength for 33.0 W of incident pump
power, corresponding to a slope efficiency of 51.8%. To
our best knowledge, these are the highest output power for
Er:YAG ceramic lasers. Laser performance of Er:YAG
ceramic laser in terms of output power and slope efficiency
should be further improved through optimizing Er3+-doping
concentration and the length of gain sample and laser
cavity design.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation
of China (NSFC) under contract 61078035, 61177045 and
the Priority Academic Program Development of Jiangsu
Higher Education Institutions (PAPD).

REFERENCES

2. J. Wisdom, M. Digonnet, and R. L. Byer, “Ceramic lasers:
4. A. Pirri, D. Alderighi, G. Toci, and M. Vannini, “High-
efficiency, high-power and low threshold Yb3+:YAG ceramic
Newburgh, “First laser performance of Er3+-doped scandia
6. N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, and M.
Dubinskii, “Resonantly pumped Er3+:Y2O3 ceramic laser for
Messing, and M. Dubinskii, “Efficient resonantly pumped
tape cast composite ceramic Er:YAG laser at 1645 nm,”
F. Yang, and T. Zhao, “Polycrystalline ceramic Er:YAG laser
in-band pumped by a high-power Er, Yb fiber laser at
9. X. F. Yang, D. Y. Shen, T. Zhao, H. Chen, J. Zhou, J. Li,
H. M. Kou, and Y. B. Pan, “In-band pumped Er:YAG ceramic
10. C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X.
P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-
power polycrystalline Er:YAG ceramic laser at 1617 nm.”

