Comparison Study of Long-haul 100-Gb/s DDO-OFDM and CO-OFDM WDM Systems

Ling Liu¹, Shilin Xiao¹*, Meihua Bi¹,², and Lu Zhang¹

¹State Key Laboratory of Advanced Optical Communication System and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
²College of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

(Received May 16, 2016 : revised August 30, 2016 : accepted September 28, 2016)

In this paper, for the first time, the transmission performances of long-haul 100-Gb/s direct detection optical OFDM (DDO-OFDM) and coherent optical OFDM (CO-OFDM) wavelength division multiplexing (WDM) systems are compared by simulation. It provides specific guides for system parameter selection to get a high-performance and cost-effective OFDM WDM system. Specifically, the comparison involves three aspects: launched power is investigated to achieve better system performance; laser linewidth is numerically investigated to choose cost-effective laser; system dispersion tolerances with different laser linewidths are analyzed to further reveal the advantages and disadvantages of these two detecting methods, direct detection and coherent detection, in long-haul OFDM WDM system.

Keywords: Direct detection optical orthogonal frequency division multiplexing (DDO-OFDM), Coherent optical OFDM (CO-OFDM), Wavelength division multiplexing (WDM) system

OCIS codes: (060.0060) Fiber optics and optical communications; (060.4510) Optical communications

I. INTRODUCTION

To satisfy the increasing bandwidth demand in high-speed fiber-optic communication networks, optical orthogonal frequency division multiplexing (O-OFDM) has been widely considered as a promising technology for long-haul high-speed optical transmission systems [1, 2], due to its properties of high spectral efficiency, robustness to chromatic dispersion and flexibility on dynamic bandwidth allocation [3]. There are two forms of detecting methods for long-haul optical OFDM systems: direct detection optical OFDM (DDO-OFDM) and coherent optical OFDM (CO-OFDM) [4, 5]. However, OFDM is quite susceptible to phase noise, which will cause severe inter-carrier interference (ICI) [6]. Since laser phase noise induced by laser linewidth [7, 8] will be converted to intensity noise along a dispersive fiber [9], there is a trade-off between laser linewidth and fiber transmission distance, especially for the CO-OFDM system where the transmission signal and the local oscillator (LO) signal must track the phase and frequency of each other. Therefore, it is crucial to investigate the impact of laser linewidth on an OFDM system to find a cost-effective laser with appropriate linewidth. Moreover, fiber nonlinearity can enhance the conversion of phase noise to intensity noise by fiber transmission [10], which is more significant in long-haul optical transmission systems. Thus the study of fiber launched power, which can not only improve the system optical signal to noise ratio (OSNR) but also induce the fiber nonlinearity, is essential as well. Also, the fiber chromatic dispersion accumulated over long-haul transmission, together with the linewidth-induced noise will worsen the system performance, so the system dispersion tolerance is measured.

In our previous work [11, 12], a low-cost, symmetric 40-Gb/s stacked WDM-OFDM-PON system was demonstrated experimentally. To further study the OFDM technology in long-haul 100-Gb/s fiber-optic transmission, in this paper, transmission performances of 100-Gb/s long-haul DDO-OFDM and CO-OFDM WDM systems have been compared through simulation. Since the impacts of fiber launched power, laser linewidth and chromatic dispersion on long-haul OFDM system exist, relevant simulations have been carried out to achieve a high-performance and cost-effective system. Results show
that the system performance of CO-OFDM is better than DDO-OFDM, while its laser linewidth requirement is far more stringent. Thus, for applications such as backbone network which needs performance improvement, CO-OFDM can be used, for passive optical network and datacenter optical interconnect which are cost-sensitive, DDO-OFDM can be used. This paper provides specific guides of system parameter selection for different applications over various transmission distances.

II. SYSTEM ARCHITECTURE

Following the system configuration of Fig. 1, the simulation was established on the commercial simulation software OptiSystem 7.0 combined with the MATLAB program. In the DDO-OFDM architecture showed by Fig. 1(a), for one channel, single Mach-Zehnder modulator (MZM) biased at quadrature point is driven by the baseband electrical OFDM signal generated offline by MATLAB to generate O-OFDM signal for direct detection. After transmission, the O-OFDM signal is detected by a photo diode (PD) and offline processed in MATLAB. In the direct up/down conversion CO-OFDM architecture illustrated by Fig. 1(b), for one channel, I/Q modulator biased at null point is driven by the in-phase (I) and quadrature (Q) components of OFDM signal [13]. The coherent receiver consists of a LO laser, a 2×4 90° optical hybrid and a pair of balanced photo diodes (BPDs). Then I and Q components of the electrical signal are offline processed in MATLAB. The procedures of OFDM signal generated and processed are described in the inset (i) and inset (ii) of Fig. 1 respectively, using the synchronization and channel estimation algorithm we proposed in [14, 15].

The bitrate of the OFDM signal in each WDM channel is 12.5 Gb/s, then the bitrate of this WDM system is 100 Gb/s (8×12.5 Gb/s). Details of OFDM parameters are showed in Table 1.

Eight 100 GHz-spaced laser diodes (LDs) working between 193.1 THz and 192.4 THz are used as downstream optical sources. The transmission link comprises loops of 80-km standard single mode fiber (SMF) and an erbium doped fiber amplifier (EDFA) with 16 dB-gain and 6 dB-noise figure. Note that, all the optical device noises and system noises are taken into consideration in this work.

III. SIMULATION AND ANALYSIS

3.1. System Performances with Different Fiber Launched Powers

To improve system budget and minimize the impact of

![FIG. 1. Architecture of the (a) DDO-OFDM and (b) CO-OFDM WDM systems. Insert (i) and (ii) are OFDM signal generation and process procedures in MATLAB program.](image)

<table>
<thead>
<tr>
<th>TABLE 1. Parameter setting of the OFDM signals in MATLAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample rate</td>
</tr>
<tr>
<td>IFFT size</td>
</tr>
<tr>
<td>CP length</td>
</tr>
<tr>
<td>Modulation format</td>
</tr>
<tr>
<td>Data subcarriers</td>
</tr>
<tr>
<td>Number of symbols</td>
</tr>
<tr>
<td>Pilot symbols</td>
</tr>
<tr>
<td>Sequence length</td>
</tr>
</tbody>
</table>
fiber nonlinearity, in this section, from the aspect of fiber launched power, the transmission performances of 100-Gb/s long-haul DDO-OFDM and CO-OFDM systems are compared and analyzed. To make a fair comparison, we set the laser linewidth to 0.01 MHz and the power of LO laser to 10 dBm. System transmission distances from 1-loop (80-km) to 6-loop (480-km) are simulated respectively. To determine the optimum fiber launched power, we vary the fiber launched power from -7 dBm to +13 dBm. It is noted that, we only select the worst channel among the eight WDM channels to analyze.

Taking 100-Gb/s 480-km CO-OFDM system for an example, the system bit error rate (BER) performance with the fiber launched power as parameter is presented in Fig. 2(a). It can be seen that, for a fixed transmission distance, with the increase of fiber launched power, BER performance becomes better at first, and then gets worse as high error floor occurs. These results can be explained in that higher fiber launched power can provide higher OSNR, but when it is too high, non-linear impairments in the fiber, such as cross-phase modulation and four-wave mixing [16], will be large enough to degrade the system performance. Similar results are obtained in DDO-OFDM system.

It is noted that, since the BER error floor is as high as 3.15×10^{-7} when transmission distance is larger than 3 loops (240 km) in DDO-OFDM system, we only present simulation results of 1-loop (80-km) and 2-loop (160-km) transmission of DDO-OFDM system in this paper. Fig. 2(b) and (c) demonstrate the optimal system performances of WDM-OFDM system over different fiber length transmission, namely, the situation when their optimum fiber launched powers are applied respectively. The receiver sensitivity of 80-km CO-OFDM system is improved by -9.3 dB at forward error correction (FEC) threshold [17] of BER@3.8×10^{-3} in comparison with 80-km DDO-OFDM system. The receiver sensitivity of 160-km CO-OFDM system is improved by -10.9 dB compared with 160-km DDO-OFDM system. Seen from Fig. 2(b) and (c), there is no doubt that the advantage of CO-OFDM is notable in the long-haul high-speed WDM system.

To present more visibly, simulation results are summarized in Table 2. Firstly, it is obvious that for both DDO-OFDM and CO-OFDM systems, the optimum fiber launched power and receiver sensitivity decrease with the increasing fiber length. This can be attributed to longer distance, which may induce larger system noise and remarkable fiber nonlinearity. Secondly, for the same fiber length, the optimum launched power in CO-OFDM system is lower while the optimum receiver sensitivity at BER of 3.8×10^{-3} is higher than that in DDO-OFDM case, that is, lower optical signal power can provide better performance in the CO-OFDM system than in the DDO-OFDM case. The reason is that, CO-OFDM is highly susceptible to fiber nonlinearity. It also reveals the better interference rejection capacity of the CO-OFDM system.

![FIG. 2. (a) BER performances with different fiber launched powers applied in 100-Gb/s CO-OFDM system over 480-km SMF. BER curves with optimum fiber launched powers applied for different fiber lengths transmission in 100-Gb/s (b) CO-OFDM and (c) DDO-OFDM systems.](image)

TABLE 2. Optimum fiber launched power, optimum receiver sensitivity @BER=3.8×10^{-3} and power-offset tolerance for a power penalty of 1dB @ BER=3.8×10^{-3} in 100-Gb/s WDM-OFDM system

<table>
<thead>
<tr>
<th></th>
<th>DDO-OFDM</th>
<th>CO-OFDM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80 km</td>
<td>160 km</td>
</tr>
<tr>
<td>Optimum launched power (dBm)</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Optimum receiver sensitivity (dBm)</td>
<td>-8.6</td>
<td>-6.9</td>
</tr>
<tr>
<td>Power-offset tolerance (dB)</td>
<td>>14</td>
<td>10.5</td>
</tr>
</tbody>
</table>
Furthermore, the tolerance of optimum launched power shift is also evaluated. Figure 3 demonstrates the power penalty versus power offset with the transmission distance as parameter. The reference of fiber launched power offset is the optimum fiber launched power for each transmission system respectively, using the results from Table 2. The power penalty is defined as the decrease in receiver sensitivity at BER of 3.8×10^{-3} when compared to the situation that its optimum fiber launched power is applied. For a fixed power penalty of 1 dB, the power-offset tolerances are listed in Table 2. For both DDO-OFDM and CO-OFDM systems, it can be seen that the increase in transmission distance will decrease the tolerance of fiber launched power shift for the same power penalty. The reason is that, owing to the increased fiber nonlinearity in longer-distance transmission, the susceptibility of the system performance to variation in power increases.

3.2. System Performances with Different Laser Linewidths

To get a cost-effective system, from the aspect of laser linewidth, the transmission performances of long-haul DDO-OFDM and CO-OFDM systems are compared and analyzed in this section. The relationship between laser phase error variance and 3-dB laser linewidth is given as follows [7, 8],

$$\sigma^2(T) = \left\{ \phi(t) - \phi(t-T) \right\}^2 = 2\pi f_{\text{3-dB}} T$$ \hspace{1cm} (1)

where $f_{\text{3-dB}}$ is 3-dB laser linewidth, $\phi(t)$ is the laser phase noise, T is the relative delay. Namely, laser phase noise depends on linewidth. Since OFDM is sensitive to phase noise, undoubtedly, narrower linewidth will provide better performance in OFDM system, especially in CO-OFDM system. However, narrower linewidth means a more expensive laser. The aim of this subsection is to provide guides for engineering trade-offs, choosing cost-effective laser with appropriate linewidth by investigating the impact of linewidth on OFDM system.

In this section, power of LO laser is set to 10 dBm. Optimum fiber launched powers are applied in each system respectively. Laser linewidths from 0-MHz to 5-MHz are applied respectively (linewidths of the signal laser and the LO laser in CO-OFDM system are the same). Taking 100-Gb/s 480-km CO-OFDM system for an example, the BER performances with the laser linewidth as parameter are presented in Fig. 4(a). To be specific, system error floors with 5-MHz laser linewidth are listed in Table 3. It is obvious that, for the same transmission distance, the wider the linewidth is, the worse the BER performance becomes and the higher the error floor is. It is attributed to the fact that, the dominant
noise term for coherent detection is the LO-spontaneous
beat noise which is dependent on laser linewidth, larger phase
noise induced by wider linewidth will worsen the system
performance, interacted with fiber dispersion.

Figure 4(b) and (c) show the receiver power penalty versus
laser linewidth with transmission distance as parameter. The
power penalty is defined as the decrease in receiver sensitivity
at BER of 3.8×10^{-3} for each case as compared to the situation
when ideal laser, i.e., 0-MHz linewidth laser, is used. The
requirements of laser linewidths can be obtained. For a fixed
power penalty of 1dB @BER=3.8×10^{-3}, the linewidth require-
ment is showed in Table 3.

Firstly, it can be seen that linewidth requirement of DDO-
OFDM system is relaxed in comparison with CO-OFDM
system for the same transmission distance. Especially for
80-km 100-Gb/s transmission, there is barely any power penalty
for DDO-OFDM systems with different laser linewidths.
The reason can be explained as follows. After fiber trans-
mision, for direct detection which is based on the square
law detection of the received signal, optical carrier and the
subcarriers both experience the same dispersion effect; for
coherent detection, the spectrum of received signal broadens
owing to the combined effect of dispersion and phase noise,
that is, spectral widths of received signal and LO signal
are not the same, so the beat of received signal and the LO
signal will bring larger phase noise. Furthermore, combined
with the inter-channel interference in WDM system, the
performance deteriorates further.

Secondly, it can be seen from Fig. 4(b) and (c) that, the
tolerance of linewidth decreases with the increasing trans-
mision distance. The reason is that the effect of phase noise
is more remarkable after longer-fiber length transmission.
When the transmission distance is relatively shorter, the
performance deterioration mainly arises from inter-channel
interference; when the transmission distance is relatively
longer, fiber dispersion combined with the laser phase noise
is the dominant factor.

3.3. System Dispersion Tolerance

To compare the 100-Gb/s long-haul optical transmission
in DDO-OFDM and CO-OFDM WDM system comprehensi-
vely, in this section, system chromatic dispersion tolerance
is analyzed since accumulated chromatic dispersion after
long-haul SMF transmission will worsen the system perform-
ance severely. To make a fair comparison, fiber launched
power and the fiber dispersion slope stay the same in DDO-
OFDM and CO-OFDM WDM systems.

To calculate the dispersion tolerance, the OFDM signal
is detected after a variable amount of accumulated dispersion.
Figure 5 depicts the receiver power penalty versus dispersion
for different laser linewidths in 100-Gb/s DDO-
OFDM and CO-OFDM systems.

FIG. 5. Receiver power penalty of BER=3.8×10^{-3} versus
dispersion for different laser linewidths in 100-Gb/s DDO-
OFDM and CO-OFDM systems.
IV. CONCLUSIONS

Transmission performances of long-haul 100-Gb/s DDO-OFDM and CO-OFDM WDM systems are compared for the first time. The comparison is based on system parameters: fiber launched power, laser linewidth and fiber dispersion. Simulation results show that, the CO-OFDM has better performance and larger chromatic dispersion tolerance range than DDO-OFDM while it has a stricter laser linewidth requirement and its dispersion tolerance is more susceptible to laser linewidth. To achieve a high-performance and cost-effective long-haul 100-Gb/s OFDM WDM system, this paper provides specific guides for engineering trade-offs by choosing appropriate detecting methods, fiber launched power and a cost-effective laser with appropriate linewidth for different applications over various transmission distances.

ACKNOWLEDGMENT

This work was jointly supported by the National Nature Science Fund of China (No.61271216, No. 61221001, No.61501157 and No.61090393), China Postdoctoral Science Foundation (No.2013M540361) and the National “863” Hi-tech Project of China (No.2013AA013602 and No.2012AA011301).

REFERENCES