유연부품조립을 위한 시각측정시스템의 설계

김진영†
동명정보대학교 로봇시스템공학과
① 608-711 부산시 남구 용당동 535번지

조형석
한국과학기술원 기계공학과
② 305-701 대전시 유성구 구성동 373-1번지
(2002년 4월 1일 수용, 2002년 6월 10일 수정본 발행)

유연부품은 조립 시에 변화가 발생하기 때문에 로봇을 이용한 자동조립에서 이의 성공적인 조립을 위해서는 부품변형 및 상태요소를 효과적으로 측정할 수 있는 방법이 필요하다. 이에 본 논문에서는 시각센서를 이용하여 상태요소 및 부품변형을 측정할 수 있는 3차원 측정시스템의 설계방법을 제시한다. 시스템의 측정방식을 통해 실제 작업공간과 카메라 영상면 사이의 사상관계를 해석하고, 이를 도로 시스템의 설계방법을 제시한다. 또한 구현된 실제 시스템을 이용한 조립실험을 통해 제안
된 시스템의 유효성을 검증한다.

주제어 : visual sensing system, flexible parts assembly, system design, mirror.

I. 서 론

로봇을 이용한 조립의 성공을 위해서는 조립부품간의 상대 오차 보정이 필요하다. 이러한 조립제공 해결을 위한 연구로
서 그 동안 단단한 부품 (rigid part)을 대상으로 많은 연구가
가 이루어져 왔지만, 유연부품조립 (flexible parts assembly)
과 관련해서는 많은 연구가 이루어지지 않고 있다. 유연부품조립에
관한 연구로서 Merlet는 유연한 원형 표의 산업작업에서 험
과 변형 사이의 관계를 유도하였고, Zheng 등은 1차원 변형
(beam)의 산업작업에서 조립기술을 수립하였다. Nakagaki 등
은 1차원 변형 유연부의 산업작업에서 산업시의 과물모양
및 험 관계를 해석하였다.

유연부품의 경우에는 저중 또는 조립작업에 의하여 부품변
형이 발생하기 때문에 단단한 부품에서처럼 험 산업에 의해
측정된 조립변수로부터 상태요소를 알아대기 어려울 뿐
아니라, 부품체의 강성이 적어 험 정보의 유용성도 떨어진
다. 따라서 유연부품의 성공적인 조립을 위해서는 부품변형 및
상태요소를 효과적으로 측정할 수 있는 방법이 필요하다. 이
는 시각 센서에 의해 이루어질 수 있다.

본 논문에서는 상태요소 및 부품의 변형량을 측정할 수
있는 3차원시각 측정시스템의 설계방법을 제안하고, 시스템의
측정방식을 통해 실제 작업공간과 카메라 영상면 사이의 사상
관계를 해석한다. 또한 시스템의 설계 구현 및 조립실험을 통
해 제안된 시스템의 유효성을 검증한다.

II. 시각측정시스템

그림 1은 제안된 측정시스템의 기본구조로써 한대의 카
메라와 두개의 평면거울, 두개의 시각거울 그리고 부품을 파
고하여 시각로부터 험으로 이루어지고 있는데, 한대의 카메라로 3차원
위치 및 형태를 측정하기 위하여 그림 1(b)와 같은 원리로 두
개의 거울에 비친 영상을 조합하여 이를로부터 대상물체의 3차
원 정보를 얻을 수 있도록 하였다.

외측 시각거울들 (outer pyramidal mirror)은 시각돌매, 내측

1 E-mail: kjy@tmic.tif.ac.kr
3.1. 하나의 거울에 대한 해석
제안된 측정시스템에서 실제 품목의 위치 및 변형형상과 카메라에 두영된 영상사이의 관계 즉 실제 작업공간과 촬영공간 사이의 사상(mapping)관계를 구하기 위하여 우선 하나의 거울에 대한 평행해석을 수행한다. 공간상의 한점 \(x_i = (x_i, y_i, z_i)\)에서 방향 코사인 \(s_i = (l_i, m_i, n_i)\)로 측정된 벡터 \(n\)이 전처리된 거울 \(R_{i+1} = \begin{pmatrix} R_{i+1} \end{pmatrix}\)의 방향으로 변환된 뒤 \(X_{i+1} = (x_{i+1}, y_{i+1}, z_{i+1})\)라는 방향 코사인 \(s_{i+1} = (l_{i+1}, m_{i+1}, n_{i+1})\)는 다음과 같은 관계를 갖는다.

\[X_{i+1} = R_{i+1}X_i \]
\[s_{i+1} = R_{i+1}s_i \]

\[R_{i+1} = \begin{pmatrix} -L_{i+1}l_i/l_i & -M_{i+1}l_i/l_i & -N_{i+1}l_i/l_i & P_{i+1}l_i/l_i \\ -L_{i+1}m_i/m_i & -M_{i+1}m_i/m_i & -N_{i+1}m_i/m_i & P_{i+1}m_i/m_i \\ -L_{i+1}n_i/n_i & -M_{i+1}n_i/n_i & -N_{i+1}n_i/n_i & P_{i+1}n_i/n_i \\ 1 & 0 & 0 & 1 \end{pmatrix} \]

여기서 \(P_{i+1}\)는 좌표계 \(i+1\)의 원점에서 \((i+1)\)번째 좌표계에서의 좌표를 나타내고, \(P_i\)는 임상광선 \(S_i\)의 \((i+1)\)번째 거울에 수직한 선으로의 \(P_{i+1}S_i \cdot N_{i+1}\)으로 주어진다.

3.2. 시스템의 두영관계
식 (1)에서 식 (4)를 제안된 시스템에 적용하기 위하여 그림 2와 같이 좌표계를 설정한다. 여기서 \([K1a]\), \([K2a]\)는 외측 사각형을 및 내측 사각형을의 내부 중에서 각각 변수에 해당하는 좌표계이며, \([K3]\), \([K4]\)는 두 평면거울의 좌표계, 그리고 \([C]\)는 카메라 영상면 중심에 원점을 갖는 좌표계이다. 또한 \([S]\)는 촬영계의 중심 \(O\)에 원점을 갖는 촬영 좌표계이며, \([W]\)는 촬영 대상물의 기존점이 있는 작업공간의 좌표계로써 사각형거울의 중심축과 대상물이 놓여있는 물체평면 (object plane)의 교점에서 원점을 갖는다.

우선 작업공간으로부터 사각형거울의 원점을 통해 촬영공간으로 두영 (projection)되는 관계는 다음과 같이 구할 수 있다. 촬영 대상물의 원점이 \(X_i\)에서 \(S_i\)의 방향으로 출발한 벡터 \([K1a]\), \([K2a]\), \([K3]\), \([K4]\)의 내각의 거울면에 반사된 후 \(S\)의 방향으로 되어 카메라 영상면의 한점 \(X\)에 두영되었다고 할 때 \(X_{i+1}\) 및 \(S_{i+1}\)의 \(X\)와 \(S\)를 이용하여 기준좌표계 \([B]\)에 관해서 기술하면 다음과 같다.

\[X_5 = R_5R_4R_3R_2R_1X_0 = R_5X_5 \]
\[S_4 = r_4r_3r_2r_1S_{ou} = r_4S_{ou} \]
리고 거울에의 단위 벤선배터 푄은 이용하여 다음과 같이 얻어진다.

\[O'_{c} = O_{c} + 2((O_{4} - O_{c}) \cdot N_{4})N_{4} \]

(7)

\[O''_{c} = O'_{c} + 2((O_{3} - O'_{c}) \cdot N_{3})N_{3} \]

(8)

\[O''_{ca} = O''_{c} + 2((O_{2} - O''_{c}) \cdot N_{2})N_{2a} \]

(9)

\[\hat{O}_{ca} = O''_{ca} + 2((O_{1a} - O''_{ca}) \cdot N_{1a})N_{1a} \]

(10)

여기서 \(O_{3} \), \(O_{2a} \), \(O_{1a} \)는 각각 거울 외곽계 [K3], [K2a], [K1a]의 원점이고, \(N_{3} \), \(N_{2a} \), \(N_{1a} \)는 대응하는 각각의 거울에 대한 벤선 베터이다. 식 (7)에서 식 (10)까지의 관계로부터 \(\hat{O}_{ca} \)는 각 거울들의 위치와 단위 벤선메터, 그리고 화반중심 \(O \)의 좌표값을 알 수 있는데, 이는 다음과 같이 주어진다.

\[S_{o'a} = (\hat{O}_{ca} - X_{o}) / \| \hat{O}_{ca} - X_{o} \| \]

(11)

3.3. 시스템의 역투영관계

활성 공간으로부터 작업 공간으로의 역투영(inversion)관계는 식 (5)와 (6)의 무영관계를 역변환 함으로써 구할 수 있다. 대상물의 한점 \(X_{o} \)에 대응하는 영상면의 두 대응점(corresponding point) \(X_{o1} \)와 \(X_{o2} \)를 일반 이들에 대응하는 외측 사각관계의 원점 \(X_{1a} \), \(X_{0} \)와 이들로부터 \(X_{o} \)를 항하는 방향 \(S_{o'a} \), \(S_{o'1a} \)는 다음식으로부터 구한다.

\[X_{1a} = R_{3}^{-1} \cdot S_{o'1a} = R_{3}^{-1} \cdot S_{o'a} \cdot S_{o'1a} \]

(12)

\[S_{o'a} = r_{1} \cdot S_{o'a} = r_{1} \cdot S_{o'a} \]

(13)

\[S_{o'1a} = (X_{o} - O_{c}) / \| X_{o} - O_{c} \| \]

(14)

\(X_{o1} \)와 \(S_{o'1a} \)도 역시 (12)에서 식 (14)와 같은 방법으로 구할 수 있다. \(X_{o2} \)를 지나고 \(S_{o'2a} \)의 방향을 갖는 직선을 \(l_{1} \)과 \(l_{2} \)가 서로 교차하는 점 \(X_{o} \)와 \(X_{o2} \)에 대응하는 대상물의 한점 \(X_{o2} \)는 \(l_{1} \)과 \(l_{2} \)의 교점으로 주어진다.

IV. 시스템 설계

4.1. 설계변수

측정시스템의 설계목적은 측정거리(working distance)와 측정범위(field of view) 등의 주어진 사양을 만족하는 설계변수 (design parameters)를 결정하는 것이다. 설계에에는 3차 원 구조의 모든 설계변수를 고려해야 하지만 제안된 시스템은 대칭 구조므로 그림 4와 같이 2차원 상에서 대부분의 설계변수는 결정될 수 있다. 여기에 추가되어야 하는 것은 단자 두 개의 평면구조물 외측 사각관계의 한편에 대한 평 \(B_{1} \), \(B_{3} \) 를이다.

측정거리 \(w \)는 시스템의 광학중심 (optical center) \(O \)에서 물체까지의 거리로 정의되고, 이는 카메라로부터의 임사각 \(\theta \) 및 설계변수들에 따라 변화한다. 따라서 두 평면구조물의 설치각도 \(\alpha_{1}, \alpha_{2} \)가 각 45\(^\circ\)로 직사각형, \(\theta=0^\circ \)일 때를 기준으로 하여 측정거리 \(w \)를 정리하면 다음과 같다.

\[w = d_{1} + d_{2} + d_{3} + d_{4} + d_{5} \]

(15)

여기에서 폭로의 길이는 외측 사각관계의 경사각을 \(\alpha_{3} \)라 할 때 다음과 같다.
\[d_1 = \frac{L_{ol}}{2} - (d_4 - d_3) \cot \alpha_4 \]
(16)
\[d_2 = \frac{d_4 - d_3 + h}{\sin(2 \alpha_4)} \]
(17)

여기서 \(h \)는 물체평면(object plane)으로부터 빔각 사각뿔거울의 뒷면까지의 높이이다. 현재 설계 대부분의 빔각들은 높이를 가지 않기 때문에 빔각의 모든 점들이 같은 평면상에 있지만 여전히 높이를 가지기 때문에 물체평면은 어떤 고정된 높이에서 정의될 수 있다. 그러나 실제방법의 간단한 기술을 위하여 고정된 높이를 갖는 물체평면에 대해서 설계방법을 기술하고자 하기 때문에 이는 높이변화를 고려한 설계문제로 간접적으로 적용될 수 있다. 물체평면에 사각뿔거울의 뒷면에 평행한 것이므로 고정하고, 사각뿔거울의 뒷면에 의해 발생할 수 있는 물체평면의 최대각을 측정범위 \(V_a \)라 하бин 이는 다음과 같이 주어진다.
\[V_a = \frac{w_c \tan \theta_m}{\cos \alpha_p + \sin \alpha_p \tan \theta_m} \]
(18)
여기서 \(\theta_m \)은 \(\theta \)의 최대값이고 \(\alpha_p \)는 \(\theta = 0^\circ \)의 평행인 평면과 물체평면에의 법선이 이루는 각으로써 \(\alpha_p \), \(\alpha \) 및 내부 사각뿔거울의 경사각 \(\alpha_c \)를 모두 45도로 가정할 때 다음과 같이 된다.
\[\alpha_p = 2 \alpha_c - 90^\circ \]
(19)

측정시스템의 측정거리와 측정범위는 측정시스템의 사용환경 즉 조명거리라는 대상물체의 크기와 이를 파악할들의 크기, 그리고 측정시스템의 장착될 로봇의 크기, 장착공간 등을 고려하여 결정하여야 한다. 따라서 본 설계에서는 측정거리, 측정범위 및 측정시스템의 설치높이 \(h \)에 대한 초기 사양을 \(w_c = 508 \text{mm}, V_a = 40 \text{mm}, h = 185 \text{mm} \)로 결정하였다.

4.2 카메라 렌즈의 선정
물체거리(object distance), 물체크기(object height), 영상면의 크기(image height) 같거나 \(w_c, V_p, r \)의 경우에 \(\theta \)가 작게 유지되는 것은 렌즈공식(thin-lens formula)로부터 사각거울(image distance) \(b \)와 렌즈의 초점거리(focal length) \(f \)는 다음과 같이 구해진다.
\[b = \frac{rw_o}{V_p} \]
(20)
\[f = \frac{rw_o}{V_p + r} \]
(21)

여기서 \(V_p \)는 카메라의 광축에 수직한 평면에 놓인 물체의 크기에 따르는 \(\theta \)와 예외적인 것들 \(\theta \)를 이용하여 측정범위 \(V_p \)와의 관계를 다음과 같이 구할 수 있다.
\[V_p = V_a \left(\cos \alpha_p + \sin \alpha_p \tan \theta_m \right) \]
(22)

여기서 \(\theta_m \)은 활성상자의 크기 \(r \), 그리고 \(b \)와 다음과 같은 관계를 갖는다.
\[\tan \theta_m = \frac{r}{b} \]
(23)

한편 카메라의 경우 본 설계에서는 설치공간 등의 조건을 고려하여 1/2인치 CCD 카메라를 선택하였다. 그리고 로 가정하면 식 (19)에서 식 (23)까지를 이용하여 초기사양을 만족하는 \(f \)와 \(b \)를 구할 수 있다. 이 값은 \(b = 32.4 \text{mm}, f = 30.4 \text{mm} \)이다. 따라서 카메라의 렌즈는 제안범위로부터 가장 적절한 상용렌즈인 \(f = 25 \text{mm} \)를 선택하였다. 따라서 \(f = 25 \text{mm} \)에 대해 \(b \) 및 \(V_p \)를 다시 계산하면 \(b = 26.3 \text{mm}, V_p = 48.9 \text{mm} \)이 된다.

4.3 거울의 설계
측정시스템에서 사용된 거울의 크기는 그림 5에서 나타내듯이 광학중심으로부터 거리 \(a \)만큼 떨어져서 카메라의 광축에 수직하게 놓여있는 평면 \(P \)와 경사각 \(\alpha \)를 가지고 기울여져 있는 평면 \(P_a \) 사이의 관계로부터 다음과 같이 구할 수 있다.
\[L_r = \frac{a \tan \theta_{mh}}{\cos \alpha + \sin \alpha \tan \theta_{mh}} \]
(24)
\[L_l = \frac{a \tan \theta_{lh}}{\cos \alpha - \sin \alpha \tan \theta_{lh}} \]
(25)
\[L = L_r + L_l = \frac{2a \cos \alpha \tan \theta_{mh}}{\cos \alpha + \cos \alpha - \sin \alpha \tan \theta_{mh}} \]
(26)
\[B = (a + L \sin \alpha \tan \theta_{mv}) \tan \theta_{mv} \]
(27)

여기서 \(\theta_{mh} \)와 \(\theta_{mv} \)는 카메라 렌즈의 수평방향과 수직방향의 입사각이며, \(L \)과 \(B \)는 거울의 길이 및 폭에 대한 높이이다.

4.3.1 평면거울의 설계
카메라의 중심축과 실제 작업공간에 있는 물체의 좌표계의 원점 사이에는 서로 편함되어 있기 때문에 동축형상을 얻기 위하여
여 본 설계에서는 두 평면거울의 경사각을 \(\alpha_1 = \alpha_5 = 45^\circ \)로 하였으며, 두 거울의 설치위치 \(d_i, d_2 \)는 측정시스템의 소형화 및 주변과의 간섭을 고려하여 \(d_1 = 55 \text{mm}, d_2 = 90 \text{mm} \)로 하였다.

이때 식 (24)에서 식 (27)을 이용하면 평면거울의 최소 간이 및 폭 \(L \)과 \(B \) 그리고 설치거리 \(a_i \)를 다음과 같이 계산할 수 있다.

\[
L_i = \frac{a_i \cos \alpha_i \tan \theta_{mh}}{\cos^2 \alpha_i - \sin^2 \alpha_i \tan \theta_{mh}}, \quad i = 1, 2 \tag{28}
\]

\[
B_i = \left(a_i + \frac{L_i}{2} \sin \alpha_i \right) \tan \theta_{mv}, \quad i = 1, 2 \tag{29}
\]

\[
a_i = \sum_{k=1}^i d_k, \quad i = 1, 2 \tag{30}
\]

\[
L_{ij} = \frac{a_i \tan \theta_{mh}}{\cos \alpha_i - \sin \alpha_i \tan \theta_{mh}}, \quad i = 1, 2 \tag{31}
\]

4.3.2 내측 사각거울의 설계
내측 사각거울의 경사각 \(\alpha_1 \)는 \(45^\circ \)로 정사진 평면거울로의 무영을 고려하여 \(\alpha_1 = 45^\circ \)로 하였으며, 평면거울과의 설치간격 \(d_1 \)는 \(d_1 = 48.5 \text{mm} \)로 하였다. 이때 거울의 크기 \(L_4 \)와 설치거리 \(a_3 \)는 다음과 같이 구할 수 있다.

\[
L_3 = \frac{a_3 \tan \theta_{mh}}{\cos \alpha_3 - \sin \alpha_3 \tan \theta_{mh}}, \tag{32}
\]

\[
a_3 = \sum_{i=1}^3 d_i \tag{33}
\]

4.3.3 외측 사각거울의 설계
외측 사각거울의 경사각 \(\alpha_1 \)는 측정범위 등을 고려하여 \(\alpha_1 = 57.2^\circ \)로 하였으며, 평면거울과의 설치간격 \(d_1 \)는 \(d_1 = 80.9 \text{mm} \)로 하였다. 또한 사각거울(boom)의 밑면의 깊이 \(L_{OL} \)은 \(130 \text{mm} \)로 결정하였다. 이때 거울의 최소길이 및 폭 \(L_4 \)과 \(B_4 \) 그리고 설치거리 \(a_3 \)는 다음과 같이 구할 수 있다.

\[
L_4 = \frac{a_4 \tan \theta_{mh}}{\sin \alpha_4 - \cos \alpha_4 \cdot \tan \theta_{nh}}, \tag{34}
\]

\[
B_4 = (a_4 + L_4 \sin \alpha_4) \tan \theta_{mv}, \tag{35}
\]

\[
a_4 = \sum_{i=1}^3 d_i + \frac{L_{OL}}{2} (d_4 - d_1) \cot \alpha_4 \tag{36}
\]

V. 시스템의 구현 및 조립실험

이와 같은 기법에 의해 두 평면거울을 옮겨 놓고, 이를 외측 사각거울의 밑면에 부착하였다. 그리고 부품을 파지하기 위한 움드는 아크릴 평판의 밑면에 부착하였다. 평면거울 및 사각거울은 알루미늄을 경반가공하여 사용하였다.

그림 7은 제안된 측정시스템을 이용한 유연부품 조립실험의 한 예로서 구형중심과 부품 밑면 중심사이의 거리 즉 평행평행 상대오차의 크기를 \(e_{\text{rel}} \) 구형중심과 부품 밑면 중심사이의 평행

상 거리를 \(c_i \) 평행평행 상대오차의 방위각을 \(\phi_i \)라 할 때, \(e_{\text{rel}} = 7 \text{mm}, c_i = 7 \text{mm}, \phi_i = 45^\circ \)인 경우에 대해 \(\phi_i \)의 보정이용

\(m_i \)으로 평행평행 오차가 보정된 것을 보여준다. 이때의 부품 상

세는 (3).과 같고, 여기서 \(m_1 \)과 반대 방향의 적신운동 \(m_2 \),

\(m_3 \)가 수행되면 (3).에서 존재하는 각도오차가 보정될 수 있다.

![그림 6. 구현된 사각측정시스템.](image)

![그림 7. 유연부품 조립실험 예](image)
본 논문에서는 유연부품조립에 있어서 해석적 모델 없이 임의 방향의 부품변형 및 조립 상태를 간의 상태를 측정하기 위한 시각측정시스템의 설계방법을 제안하였다. 제안된 시각측정시스템은 평면거울과 시각세계를 이용하여 몇 개의 거울들과 하나의 카메라 그리고 부품을 격자기 위한 펜드로 이루어져 있으며, 다방향 측정성(multi-directional sensing)을 갖고 있고, 로봇 선언에 쉽게 부착할 수 있어서 실제 조립작업 적용에 용이하다.

제1장. 작업공간과 셀러 공간 사이의 상호작용을 구하기 위하여 광학해석을 수행하였으며, 또한 셀러 공간의 변형해석을 통해 주어진 사양을 만족하는 시스템 설계방법을 제시하였다. 제안된 설계방법에 의해 설계변수를 결정하고, 이로부터 실제 시스템을 구현하였으며, 실제 영상 활성에 의한 간단한 조립 실험을 통해, 구현된 시스템의 캐러브레이션 및 측정능능 검토 결과와 더불어 제안된 시스템 유연부품조립에 유용할 수 있었다. 향후 다양한 조건하에서의 조립기술 등 계속적인 연구를 수행할 예정이다.

감사의 글

이 논문은 2001년도 한국과학기술재단의 지원에 의하여 연구

구하였음(KRF-2001-003-E00054).

참고문헌

Design of a visual sensing system for flexible parts assembly

Jin Young Kim†
Department of Robot system Engineering,
Tongmyong University of Information Technology, Busan 608-711, KOREA
†E-mail: kji@ntmic.itit.ac.kr

Hyung Suck Cho
Department of Mechanical Engineering,
Korea Advanced Institute of Science and Technology, Daejon 305-701, KOREA

(Received April 1, 2002 ; revised manuscript received June 10, 2002)

Unlike rigid parts, flexible parts can be deformed by contact force during assembly. In robotic assembly, information about their deformation as well as possible misalignment between the holes and their respective mating parts is essential for successful assembly. This paper presents a method to design a visual sensing system for measuring parts deformation and misalignment in flexible parts assembly. This paper performs ray-trace analysis of the system. A series of experiments for flexible parts assembly by using the implemented system are performed.

Classification code : OE.050.