Polarization Analysis of Light Passing Through Non-uniform Uniaxial Media

Jang Wi Ryu†, Sang Youl Kim†, and Yong Ki Kim

†Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
‡Samsung Advanced Technology Training Institute, Suwon 442-380, Korea

(Received May 27, 2010; Revised manuscript June 21, 2010; Accepted June 21, 2010)

We suggest an effective expression of transmission coefficients between uniaxial anisotropic media. To study the transmission of oblique incident light by stratified anisotropic planar structures, we included an imaginary isotropic layer sandwiched between those anisotropic media, and then considered multiple reflection within the imaginary layer. The adequacy of this expression is confirmed by comparing the polarization analysis of light passing through the anisotropic medium and the multi-layered anisotropic media.

Keywords: Liquid crystal display, Anisotropy, Polarization
OCIS codes: (230.3720) Liquid-crystal devices; (260.1180) Crystals; (260.5430) Polarization

I. 서 론

이방성 매질을 투과한 빛의 편광상태를 계산하는 방법으로 Berreman의 4×4 행렬계산법이 일반적으로 많이 사용되고 있다.[1-3] 비균일한 이방성 매질을 균일한 두개의 이방성 매질로 나눈 후, 이방성 매질 사이의 경계면에서 전자기장의 연속성과 흐름의 균일성을 이용하여 투과된 빛의 편광상태를 계산하는 4×4 행렬계산법은 매질이 두개로 나뉘었을 때도 발전해서 이제 단순한 경계면에서의 경우와 같다.[4] 한편 4×4 행렬계산법은 비균일한 이방성 매질을 균일한 이방성 매질로 가정하여 계산하는 방법으로 비균일 이방성 매질을 투과하는 빛의 편광상태 계산에 Yeh과 Lien 등에 의해 개발되었으나,[5,6] 이방성 매질을 투과하는 빛의 편광상태 계산에 Yeh과 Lien 등에 의해 개발되었으나,[5,6] 2 × 2 행렬계산법은 4×4 행렬계산법보다 직관적이고 계산이 단순한 점이 있지만, 균일한 이방성 매질 내의 다중반사를 무시하고, 이방성이 작다고 가정하여 근사적인 계산법을 사용하는 등 4×4 행렬계산법에 비해 사용성 제약이 따르지만, 이방성이 작은 경우의 경우에 큰 차이가 없음이 Kwok 등에 의해 보고되었다.[7]

본 논문에서는 비균일 단축 이방성 매질을 투과하는 빛의 편광상태를 계산하는 새로운 방법을 제안한다. 이방성 매질에서 이방성 매질로 투과하는 빛의 편광상태 계산에 Yeh과 Lien 등에 의해 개발되었으나,[5,6] 2 × 2 행렬계산법은 4×4 행렬계산법보다 직관적이고 계산이 단순한 점이 있지만, 균일한 이방성 매질 내의 다중반사를 무시하고, 이방성이 작다고 가정하여 근사적인 계산법을 사용하는 등 4×4 행렬계산법에 비해 사용성 제약이 따르지만, 이방성이 작은 경우에 큰 차이가 없음이 Kwok 등에 의해 보고되었다.[7]
II. 3상계 구조를 사용한 2상계 경계면에서의 투과계수 표현

여기에서는 2상계 경계면에서 바닥에 도달한 빛의 반사와 굴절을 직접 계산한 결과를 사용하고 이 2상계 경계면에서 반사계수와 투과계수를 계산한 결과를 갖는 다중반사를 고려하여 2상계 경계면에서 반사계수와 투과계수를 계산하는 데에도 적용하였고 구체적인 표현들을 제시하였다.

2.1. 3상계 구조를 갖는 2상계 경계면에서 반사계수와 투과계수 표현

2상계 경계면에서 바닥에 도달한 빛의 반사와 굴절은 그림 1과 같이 나타낼 수 있다. 본 논문에서는 매질의 굴절률을 \(n_1 \) 또는 \(n_2 \), 반사계수는 \(r_1 \), 투과계수는 \(t_1 \)로 표시하며, 각 계수의 아래 첨자에서 숫자는 매질을 나타낸다.

\[
\begin{align*}
R_{13a} &= \frac{n_1 \cos \theta_1 - n_2 \cos \theta_3}{n_1 \cos \theta_1 + n_2 \cos \theta_3} \\
R_{13b} &= \frac{n_1 \cos \theta_1 - n_2 \cos \theta_3}{n_1 \cos \theta_1 + n_2 \cos \theta_3} \ldots (1-1)
\end{align*}
\]

그림 2는 등방성 매질(1)과 (3) 사이에 두께가 \(d \)인 동방성 매질(2)가 있는 경우 진행하는 빛의 반사와 굴절을 나타낸다. 파장이 \(\lambda \)인 빛이 매질(2) 내부를 진행할 때 위상차이는 \(2\pi d n \cos \theta_2 / \lambda \) 이므로 매질(2) 내의 다중반사를 고려하면, 매질 (1), (2), (3)을 진행하는 반사파, \(r_{123} \), 투과파, \(t_{123} \)은 식 (2)와 같이 정리할 수 있다.

\[
\begin{align*}
r_{123} &= r_{12} + r_{23} = \frac{r_{12} + r_{23}e^{2j\theta}}{1 + r_{23}e^{2j\theta}} \ldots \frac{r_{12} + r_{23}e^{2j\theta}}{1 + r_{23}e^{2j\theta}} \\
t_{123} &= t_{12}t_{23}e^{j\theta}(1 + r_{23}e^{j\theta}) \ldots \frac{t_{12}t_{23}}{1 + r_{23}e^{j\theta}} \ldots (2)
\end{align*}
\]

매질(2)의 두께 \(d \)가 0인 경우 위상차이는 0이므로 식 (2)는 식 (3)과 같이 된다.

\[
\begin{align*}
r_{123} &= r_{12} + r_{23} = \frac{r_{12}}{1 + r_{23}r_{12}^2} \\
t_{123} &= t_{12}t_{23} = \frac{t_{12}t_{23}}{1 + r_{23}r_{12}^2} \ldots (3)
\end{align*}
\]
\(s - \)파와 \(p - \)파 각각의 경우에 식 \((3) \)의 반사계수와 투과계수 표현에 식 \((1) \)과 같은 계면에서의 Fresnel 반사계수와 Fresnel 투과계수를 대입하여 정리하면 식 \((4) \)와 같이 매질 \((1), (2), (3) \)을 진행하는 빛의 \(s - \)파와 \(p - \)파의 반사계수와 투과계수 표현들을 얻을 수 있다.

\[
\begin{align*}
\mathbf{r}_{123} &= \frac{n_{c}\cos\theta_{1} - n_{a}\cos\theta_{3}}{n_{c}\cos\theta_{1} + n_{a}\cos\theta_{3}} = r_{123} \\
\mathbf{r}_{p13} &= \frac{n_{c}\cos\theta_{3} - n_{a}\cos\theta_{1}}{n_{c}\cos\theta_{3} + n_{a}\cos\theta_{1}} = r_{p13} \\
\mathbf{t}_{123} &= \frac{2n_{c}\cos\theta_{1}}{n_{c}\cos\theta_{3} + n_{a}\cos\theta_{1}} = t_{123} \\
\mathbf{t}_{p13} &= \frac{2n_{a}\cos\theta_{1}}{n_{c}\cos\theta_{3} + n_{a}\cos\theta_{1}} = t_{p13}
\end{align*}
\] (4-1)

\[
\begin{align*}
\mathbf{Fresnel}_{\text{리}} &= \frac{1}{2} \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \frac{1}{2} \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\end{align*}
\] (4-2)

식 \((4) \)는 매질 \((1) \)에서 매질 \((3) \)으로 진행하는 빛의 반사계수 또는 투과계수 표현인 식 \((1) \)과 일치하는데 매질 \((2) \)의 굴절률 은 식 \((4) \)에 포함되지 않음을 알 수 있다. 이는 동방성 매질 사이에 가상의 동방성 매질을 도입하더라도 가상의 매질 내의 다중반사를 고려하고 두께를 0으로 하여 매질을 투과한 빛의 편광상태를 계산한다면 매질 \((2) \)의 굴절률과 무관하게 매질 \((1) \)으로 진행하는 빛의 반사계수 표현과 투과계수 표현을 정확하게 구할 수 있음을 의미한다.

2.2. 동방성 매질 사이에 동방성 매질이 있는 경우 투과계수 표현

2.1에서 사용한 방법을 응용하여 두 동방성 매질 사이에 가상의 동방성 매질을 가정하고 가상의 동방성 매질 내의 다중반사를 의한 효과를 고려한다면, 두 동방성 매질을 진행하는 빛의 유효투과계수 표현을 얻을 수 있다. 그림 3은 이방성 매질 \((1) \)과 \((3) \) 사이에 가상의 동방성 매질 \((2) \)과 \((2) \)가 정한 경우 매질 사이의 반사, 투과에 대한 개념도이다.

그림 3과 같이 이방성 매질과 동방성 매질의 경계면에서는 이방성 매질로의 반사와 등방성 매질로의 투과가, 동방성 매질과 이방성 매질의 경계면에서는 동방성 매질로의 반사와 이방성 매질로의 투과가 나타난다. 만약 각 경계면에서 반사계수와 투과계수를 알면 이방성 매질 사이의 동방성 매질 내에서의 다중반사를 의한 효과가 고려된 투과와의 편광상태를 계산할 수 있다. 동방성 매질에서 위상차이 차이를 \(\phi \), 이방성 매질 \((1) \)에서 동방성 매질 \((2) \)로 입사하는 빛의 이상파(\(p - \)파)와 정상파(\(s - \)파) 성분의 세기를 \((A_{ps}, A_{ps})^{T} \), 동방성 매질 \((2) \)에서 이방성 매질 \((3) \)으로 투과된 빛의 \(s - \)파, \(p - \)파 성분의 세기를 \((C_{ps}, C_{ps})^{T} \)라 한다면, \((C_{ps}, C_{ps})^{T} \)는 매질 \((2) \)에서의 다중반사 효과를 고려하여 식 \((5) \)과 같이 계산할 수 있다.

\[
\begin{align*}
\mathbf{A}_{p} - \mathbf{A}_{s} &= \left[\begin{array}{c}
A_{ps} \\
A_{ps}
\end{array} \right] \\
\mathbf{A}_{s} - \mathbf{A}_{p} &= \left[\begin{array}{c}
A_{ps} \\
A_{ps}
\end{array} \right]
\end{align*}
\]

\[
\begin{align*}
\mathbf{C}_{p} - \mathbf{C}_{s} &= \left[\begin{array}{c}
C_{ps} \\
C_{ps}
\end{array} \right] \\
\mathbf{C}_{s} - \mathbf{C}_{p} &= \left[\begin{array}{c}
C_{ps} \\
C_{ps}
\end{array} \right]
\end{align*}
\] (5)

\[
\mathbf{R} = \begin{pmatrix}
\mathbf{f}_{123} & \mathbf{f}_{123} \\
\mathbf{f}_{123} & \mathbf{f}_{123}
\end{pmatrix} = \begin{pmatrix}
\mathbf{A}_{p} - \mathbf{A}_{s} & \mathbf{A}_{s} - \mathbf{A}_{p} \\
\mathbf{A}_{s} - \mathbf{A}_{p} & \mathbf{A}_{p} - \mathbf{A}_{s}
\end{pmatrix}
\] (6)

\[
\begin{align*}
\mathbf{E}^{\phi} &= \left[\begin{array}{c}
\mathbf{e}_{123}^{\phi} \mathbf{R}_{123} \\
\mathbf{e}_{123}^{\phi} \mathbf{R}_{123}
\end{array} \right] \\
\mathbf{E}^{\phi} &= \left[\begin{array}{c}
\mathbf{e}_{123}^{\phi} \mathbf{R}_{123} \\
\mathbf{e}_{123}^{\phi} \mathbf{R}_{123}
\end{array} \right]
\end{align*}
\] (7)

\[
\begin{align*}
\mathbf{R} = \iota e^{\frac{i}{2} \mathbf{R}_{123}} \\
\mathbf{R} = \iota e^{\frac{i}{2} \mathbf{R}_{123}}
\end{align*}
\] (8)

\[
\mathbf{R} = \left[\begin{array}{c}
\mathbf{e}_{123}^{\phi} \mathbf{R}_{123} \\
\mathbf{e}_{123}^{\phi} \mathbf{R}_{123}
\end{array} \right]
\] (9)
식 (9)를 식 (5)에 적용하면 두 이방성 매질 사이를 진행하는 빛의 유 효 투과계수는 식 (10)과 같이 정리하여 계산할 수 있다.

$$\begin{bmatrix} C_{10} \\ C_{01} \end{bmatrix} = \begin{bmatrix} t_{2x,2y} & t_{2x,2y} \\ t_{2y,2x} & t_{2y,2x} \end{bmatrix} (I - R)^{-1} \begin{bmatrix} A_{1x} \\ A_{0y} \end{bmatrix}$$ \hspace{1cm} (10)

III. 비균일 이방성 분포를 가지는 매질에 의한 편광상태 변화

이방성 매질이 비균일 분포를 이루며 광축이 연속적으로 변하는 경우, 그림 4와 같이 다층의 균일한 이방성 매질이 연속적으로 변화하고 있다고 근사할 수 있다. 다층의 이방성 매질을 투과한 빛의 편광상태는 각 이방성 매질 사이에 두께가 0인 등방성 매질을 도입하고 가상의 등방성 매질 내의 다중반사를 고려하여 식 (11)과 같이 계산할 수 있다.

$$\begin{bmatrix} G_n \\ F_n \end{bmatrix} = \begin{bmatrix} \frac{t_{x,2}}{t_{x,2}}, & e^{ik_xd} \\ 0, & e^{-ik_xd} \end{bmatrix} \begin{bmatrix} t_{x,2} & t_{y,2} \\ t_{y,2} & t_{x,2} \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} \\ R_{12} & R_{22} \end{bmatrix} \cdots \begin{bmatrix} t_{x,2} & t_{y,2} \\ t_{y,2} & t_{x,2} \end{bmatrix} \begin{bmatrix} F_x \\ F_y \end{bmatrix}$$ \hspace{1cm} (11)

식 (11)에서 \((F_x, F_y)^T\)는 첫 번째 이방성 매질로 입사하는 \(-\)파와 \(+\)파 성분, \((G_n, F_n)^T\)는 \(N\) 번째 이방성 매질을 투과한 빛의 \(-\)파와 \(+\)파 성분의 크기를 나타내며, \(R_{ij}(i, j = 1, 2)\)는 가상의 동방성 매질에서 더음반사 효과를 고려한 행렬의 성분, 즉 식 (9)와 같고, \(k_x(= o, e)\)는 \(-\)파와 \(+\)파 파수벡터의 \(z\)-축 성분이다. 비균일 이방성 매질을 다층의 균일한 이방성 매질의 합으로 간주하고 각 이방성 매질 사이에 두께가 0인 등방성 매질을 도입한 다음 이 동방성 매질 내의 다중반사를 고려하여 전자 비균일 이방성 매질을 투과한 빛의 편광상태를 기술하는 식 (11)은 LCD에 사용하는 액정뿐만 아니라 모든 비균일 이방성 매질의 편광상태 분석에 사용할 수 있는 새로운 방법이다.

IV. 전기장과 전기변위에서 정상파와 이상파의 단위벡터

전기장의 경우 \(-\)파와 \(+\)파의 단위벡터는 전기변위의 단위벡터보다 더 복잡한 과정을 거쳐야 얻을 수 있는데 실험실좌표계에서 \(-\)파와 \(+\)파의 파수벡터에 대한 일반적인 표현을 얻고, 이들 표현을 주축좌표계로 변환하고, 다시 주축좌표계에서 실험실좌표계로 변화하는 과정이 필요하다.

이방성 매질의 광축이 \(c\) 방향으로 있는 주측좌표계를 \(abc\) 좌표계로 하고 빛이 진행하는 방향을 나타내는 파수벡터 \(k = (k_x, k_y, k_z)\)로 나타낸 \(abc\) 좌표계에서 \(-\)파와 \(+\)파의 전기장 단위벡터는 각각 식 (13)과 같다.

$$\begin{bmatrix} \vec{E}_{o,abc} \\ \vec{E}_{e,abc} \end{bmatrix} = \begin{bmatrix} k_z \\ -k_y \end{bmatrix}$$ \hspace{1cm} (13-1)

$$\begin{bmatrix} \vec{E}_{o,abc} \\ \vec{E}_{e,abc} \end{bmatrix} = \begin{bmatrix} k_x \\ k_y \\ -k_z \end{bmatrix}$$ \hspace{1cm} (13-2)

식 (13)에서 \(n\)은 빛의 진행방향에서 매질의 굴절률을 나타내고, \(n_o, n_e\)는 각각 정상굴절률과 이상굴절률을 나타낸다.

그림 5와 같이 \(xyz\) 좌표계에서 단측 이방성 매질의 광축이 \(z\)-축에 대하여 \(\phi_1\) 만큼 기울어져 있고, 광축의 \(xy\)-평면 투영상이 \(x\)-축에 대하여 \(\phi_2\) 회전한 경우, \(-\)파와 \(+\)파의
TEXT

FIG. 5. Orientation of the e-axis of a uniaxially anisotropic medium in the xyz-coordinate system, where ϕ is the angle between the e-axis and the x-axis, and θ_e is the angle between projection of the e-axis on the xy-plane and the x-axis.

전기장 단위벡터는 입사면이 yz-평면상에 있도록 좌표계를 설정하면, o-파와 e-파의 파수벡터는 각각 $\begin{pmatrix} k_{o,xyz} = \hat{y}(\beta) + \hat{z}(\kappa_e) \\ k_{e,xyz} = \hat{y}(\beta) + \hat{z}(\kappa_e) \end{pmatrix}$와 같다. 여기에서 β는 o-파와 e-파 파수벡터의 y축 성분으로 파수벡터와 관계없이 동일한 값을 갖는다. abc-좌표계와 xyz-좌표계가 $b = \hat{x} \times \hat{c}$의 관계가 있을 때 두 좌표계 사이에는 식 (14)의 관계식이 성립한다.

\[
\begin{pmatrix}
\hat{a} \\
\hat{b} \\
\hat{c}
\end{pmatrix} = \begin{pmatrix}
\cos\theta_e \cos\phi_e & \sin\phi_e & -\sin\theta_e \\
-\sin\phi_e & \cos\phi_e & 0 \\
\sin\theta_e \cos\phi_e & \sin\theta_e \sin\phi_e & \cos\theta_e
\end{pmatrix}
\begin{pmatrix}
\hat{x} \\
\hat{y} \\
\hat{z}
\end{pmatrix}
= \begin{pmatrix}
t_{xyz} \rightarrow abc
\end{pmatrix}
(14)
\]

이제, abc-좌표계에서 o-파와 e-파의 파수벡터는 각각 식 (15)와 같이 얻을 수 있다.

\[
k_{o,abc} = \hat{y}(\beta \cos\theta_e \sin\phi_e - k_e \sin\theta_e) + \hat{z}(\beta \cos\theta_e \sin\phi_e + k_e \cos\theta_e)
+ \hat{c}(\beta \sin\theta_e \sin\phi_e + k_e \cos\theta_e)
\]

\[
k_{e,abc} = \hat{y}(\beta \cos\theta_e \sin\phi_e - k_e \sin\theta_e) + \hat{z}(\beta \cos\theta_e \sin\phi_e + k_e \cos\theta_e)
+ \hat{c}(\beta \sin\theta_e \sin\phi_e + k_e \cos\theta_e)
\]

식 (15)의 파수벡터를 식 (13)에 대입하여 정리하면 abc-좌표계에서 o-파와 e-파의 전기장 단위벡터는 (16)과 같이 정리할 수 있다.

\[
\vec{E}_{o,abc} = \begin{pmatrix}
-k_e \\
k_e
0
\end{pmatrix} \Rightarrow \begin{pmatrix}
\beta \cos\phi_e \\
-\beta \cos\theta_e \sin\phi_e + k_e \sin\theta_e
\end{pmatrix}
\]

\[
\vec{E}_{e,abc} = \begin{pmatrix}
k_e \\
-n_e(\theta_e)^2 - n_o \\
k_e
0
\end{pmatrix} \Rightarrow \begin{pmatrix}
\beta \cos\phi_e \\
-n_e(\theta_e)^2 - n_o \\
\beta \sin\theta_e \sin\phi_e + k_e \cos\theta_e
\end{pmatrix}
\]

\[
(16-1)
\]

\[
(16-2)
\]

식 (16)의 $\vec{E}_{o,abc}$에서 분모의 특이점을 없애주면 식 (17)과 같이 정리된다.

\[
\vec{E}_{e,abc} = \begin{pmatrix}
n_e(\phi_e)^2 - n_o \\
n_e(\phi_e)^2 - n_o \\
n_e(\phi_e)^2 - n_o
\end{pmatrix}
\begin{pmatrix}
\beta \cos\phi_e \\
-n_e(\theta_e)^2 - n_o \\
\beta \sin\theta_e \sin\phi_e + k_e \cos\theta_e
\end{pmatrix}
\]

\[
\Rightarrow \begin{pmatrix}
\beta \cos\phi_e \\
-\beta \cos\theta_e \sin\phi_e + k_e \sin\theta_e \\
\beta \sin\theta_e \sin\phi_e + k_e \cos\theta_e
\end{pmatrix}
\]

\[
(17)
\]

abc-좌표계에서 유도된 o-파와 e-파의 전기장 단위벡터에 식 (14) 내에 있는 변환행렬의 역행렬, 즉 $\mathbf{T}_{xyz\rightarrow abc}$을 곱해주면 xyz-좌표계에서의 전기장 단위벡터 표현을 식 (18)과 같이 얻을 수 있는데, 여기에서는 그 계산과정이 복잡하여 구체적인 표현은 생략하였다.

\[
\vec{E}_{o,xyz} = \mathbf{T}_{xyz\rightarrow abc} \vec{E}_{o,abc}
\]

\[
\vec{E}_{e,xyz} = \mathbf{T}_{xyz\rightarrow abc} \vec{E}_{e,abc}
\]

\[
(18)
\]

V. 시뮬레이션 결과 및 토의

III. 이용한 비균일 이방성 매질을 투과한 빛의 편광상태 변화를 계산하는 방법의 타당성을 확인하기 위하여 광학적 기울임각과 방위각을 갖는 균일한 단층 이방성 매질을 투과한 빛의 편광상태 변화를 계산하고 이를 다시 여러 개의 층으로 잘게 나누어 계산한 편광상태 변화와 비교하였다. 이 방정식 매질의 경우, 같은 방정식의 변형을 도입한 후, 등방성 매질 내의 다중반사를 고려한 편광상태 변화를 계산하여, 단층으로 계산한 결과와 비교함으로써 본 연구에서 제안하는 방법의 타당성을 확인하였다.

타원형은 시료에서 반사하거나 시료를 투과한 빛의 편광상태 변화를 분석하여 시료의 광학적 특성을 분석하는 연구방법으로 본 연구에서는 이방성 매질을 투과한 빛의 편광상태 변화를 표현하기 위하여 투명성과 방식의 타원형에서 생성되는 푸리에 계수 (α, β)를 사용하였다. 타원형에서는 투명성의 경우, 전기장의 p-파 성분과 s-파 성분의 복소주파수 수의 비로 식 (19)과 같이 타원상수를 정의한다.

\[
\rho = \tan\psi / \Delta = \frac{t_p}{t_s}
\]

\[
(19)
\]

식 (19)에서 ψ는 푸리에계수의 임계각에 대한 비율을 의미하고, Δ는 위상변화의 차이를 의미한다. 투명성 투명성과 방식의 타원형에서는 식 (20)과 같이 정의되는 푸리에 계수 (α, β)를 측정하는데, 여기에서 L_0는 시각에 따라 측정되는 빛의 세기로, φ는 검광사의 한 주기에서 평균 빛의 세기로, ω는 회전하는 검광자의 각도로, L_0은 푸리에 계수 (α, β)는 타원상수 (ψ, Δ)의 관계

\[
L_0 = I_0(1 + \alpha \cos 2\omega t + \beta \sin 2\omega t)
\]

\[
(20)
\]
가 있는데, 여기에서 \(P \)는 편광각의 방위각이다.

\[
\alpha = \frac{\tan^2 \psi - \tan^2 P}{\tan^2 \psi + \tan^2 P}
\]

\[
\beta = \frac{2\tan \psi \cos \Delta \tan P}{\tan^2 \psi + \tan^2 P}
\]

그림 6는 정상층과 이상층의 각각 \(n_r = 1.5, n_c = 1.55, \theta_r = 20^\circ, \phi_r = 12^\circ, d = 5 \mu m \)인 이방성 막의 경우와, \(550 \) \(\mu m \), 입사각 50도에서 이 막 시료를 360도 회전시켜 계산한 \((\alpha, \beta)\) 그래프이다. 여기에서는 이방성 층의 두께를 1부터 2, 5, 10, 20, 50, 100, 200, 500까지 늘리면서 \((\alpha, \beta)\)가 일정하게 유지되는지를 여부를 확인하고자 하였다. 그림 6-(a)는 식 (11)의 계산식에서 \(\sigma - \)파와 \(\epsilon - \)파의 전기장 단위벡터를 사용하고 가상의 등방성 매질에서 다중반사를 고려하지 않고 계산한 그래프이며, 그림 6-(c)는 그림 6-(a)와 그림 6-(b)에서 중이 하나인 경우 500개의 각도 차이를 보여준다. 그림 6에서 볼 수 있듯이 계산한 \((\alpha, \beta)\) 결과값은 \((\alpha, \beta)\) 계산식에 전기장 단위벡터를 사용하고 다중반사를 고려하지 않으면 나누는 층의 개수가 증가함에 따라 그 차이가 증가하는 것을 관찰할 수 있다. 그림 6-(c)에서는 \(n_r = 1.5, n_c = 1.55, \theta_r = 20^\circ, \phi_r = 12^\circ, d = 5 \mu m \)인 가상의 등방성 매질을 도입한 후, 동방성 매질 내의 다중반사를 고려한 후, 정상파와 이상파의 전기장 단위벡터를 사용하였다. 양향좌표계의 타당성을 확인하기 위하여 균일한 단축 이방성 매질을 투과하는 빛의 편광상태 변화를 두 이방성 매질 사이의 다중반사를 고려하여 계산한 결과와 비교한 끝에 그 차이 값이 최대 \(\Delta \alpha = 0.015 \) \(\Delta \beta = 0.01 \)으로 나타나 그 결과가 일치하였다.

VI. 결론

본 연구에서는 단축 이방성 매질에서 다른 단축 이방성 매질로 진행하는 빛의 편광상태 변화를 연구하였다. 두 이방성 매질 사이의 유호투과계수를 얻기 위하여 두개의 가상의 등방성 매질을 도입한 후, 동방성 매질 내의 다중반사를 고려한 후, 정상파와 이상파의 전기장 단위벡터를 사용하였다. 양향좌표계의 타당성을 확인하기 위하여 균일한 단축 이방성 매질을 투과하는 빛의 편광상태 변화를 두 이방성 매질 사이의 다중반사를 고려하여 계산한 결과와 비교한 끝에 그 차이 값이 최대 \(\Delta \alpha = 1.0 \times 10^{-7} \)으로 나타나 그 결과가 일치하였다.

References

5. C. Gu and P. Yeh, “Extended Jones matrix method. II,”

