Redistribution/Dehydrocoupling of Endocrine \(n\)-Bu\(_3\)SnH to Polystannanes Catalyzed by Group 4 Metallocene Complexes

Jaeyoung Park\(^1\), Seongsim Kim\(^1\), Beomgi Lee\(^1\), Hyeonsook Cheong\(^1\)
Ji Eun Noh\(^2\) and Hee-Gweon Woo\(^3\)

Abstract

Trialkyltin \(n\)-Bu\(_3\)SnH, an endocrine disruptor, was slowly converted by the catalytic action of group 4 \(\text{Cp}_2\)MCl\(_2\)/Red-Al (M = Ti, Zr, Hf) to produce two phases of products: one is an insoluble cross-linked solid, polystannane in 7-23% yield as minor product via redistribution/dehydrocoupling combination process, and the other is an oil, hexabutyldistannane in 69-90% yield as major product via simple dehydrocoupling process. Redistribution/dehydrocoupling process first produced a low-molecular-weight oligostannane possessing partial backbone Sn-H bonds which then underwent an extensive cross-linking reaction of backbone Sn-H bonds, leading to an insoluble polystannane. This is the first exciting example of redistribution/dehydrocoupling of a tertiary hydrostannane catalyzed by early transition metallocenes.

Key words: Redistribution, Dehydrocoupling, Polystannane, Metallocene, Catalyst, Endocrine

1. Introduction

Inorganic polymers as substitutes for organic polymers are very important for diverse industrial applications\(^3\). Especially polysilanes with unique optoelectronic and chemical properties attributed to sigma-electron conjugation along the silicon polymer backbone have received a great deal of attention\(^3\). The conventional Wurtz coupling reaction of organodichlorosilanes to polysilanes using an alkali metal dispersion in toluene-refluxing temperature has several disadvantages including extreme reaction condition, low yield, etc.\(^3\). An alternative for synthesizing polysilanes without resort to a transition metal catalyst have been reported\(^4\). Harrod’s recent discovery of a group 4 metallocene-catalyzed dehydropolymerization of hydrosilanes, paved the new way to synthesizes polysilanes\(^5\). Great efforts have been made to improve the dehydropolymerization method\(^6\)-\(^11\). By comparison, polystannane, a tin analogue of polysilane, has not been studied until quite recently because of its synthetic difficulties. The synthesis of poly(di-\(n\)-butylstannane) by Wurtz-type coupling of \(n\)-Bu\(_2\)SnCl\(_2\) using molten Na metal\(^12\) and by hydrostannolysis of \(n\)-Bu\(_2\)Sn (CH\(_2\)CH\(_2\)OEt)NMe\(_2\) in the presence of DIBAL-H\(^13\) have been reported. Recently, Tilley et al. described the catalytic dehydrocatenation of secondary stannanes with the group 4 zirconocene complexes, producing soluble mixtures of cyclic oligostannanes (~50%) and linear polystannanes (\(M_n\) ~70,000)\(^14\)-\(^16\). Subsequently, Corey and coworker also described the similar dehydrocatenation of \(n\)-Bu\(_2\)SnH\(_2\) catalyzed by the \(\text{Cp}_2\)MCl\(_2\)/n-BuLi (M = Zr, Hf) combination\(^14\). The \(\text{Cp}_2\)MCl\(_2\)/Red-Al (M = Ti, Zr, Hf) combination catalyst and the \(\text{M(CO)}_6\) (M = Cr, Mo, W) catalyst have been developed in our laboratory for dehydrocatenation of hydrosilanes to polysilanes\(^15\)-\(^17\). Trialkyltin compounds are well known endocrine disruptors or environmental hormones unlike trialkylsilane compounds\(^16\). Organic tin compounds have been used as stabilizer-catalyst-antibacterial. We reported the redistribution/dehydrocatenation of \(n\)-Bu\(_2\)SnH\(_2\) promoted by the \(\text{Cp}_2\)MCl\(_2\)/Red-Al (M = Zr, Hf), producing cross-linked insoluble polystannanes and non-cross-linked soluble oligostannanes\(^17\). Here we report the redistribution/dehydrocatenation of \(n\)-Bu\(_2\)SnH to polystannanes catalyzed by the group 4 \(\text{Cp}_2\)MCl\(_2\)/Red-Al (M = Ti, Zr, Hf) combination.

\(^1\)Department of Biotechnology, Chosun University, Gwangju 501-759, Korea
\(^2\)Department of Chemistry and Nanotechnology Research Center, Chonnam National University, Gwangju 500-757, Korea
\(^3\)Corresponding author: hgwoo@jnu.ac.kr, hscheong@chosun.ac.kr

(Received: June 15, 2012, Revised: June 20, 2012, Accepted: June 24, 2012)
2. Experimental

2.1. Materials

All reactions and manipulations were carried out under prepurified nitrogen or argon gas using Schlenk techniques. Dry, oxygen-free solvents were employed throughout. Glasswares were flame-dried or oven-dried before use. \(\text{Cp}_2\text{MCl}_3 \) (\(M = \text{Ti, Zr, Hf} \)), \(n\)-\(\text{Bu}_3\text{SnCl} \), and Red-Al (or Vitride; sodium bis(2-methoxyethoxy)aluminum hydride; 3.4 \(M \) in toluene) were purchased from Aldrich Chemical Co. and were used without further purification. \(n\)-\(\text{Bu}_3\text{SnH} \) [IR (neat, KBr, cm\(^{-1}\)): 1808 s (nSn-H); \(^1\)H NMR (d, CDCl\(_3\)/CH\(_2\)Cl\(_2\)) as a reference at 7.24 ppm downfield from TMS. GC/MS data were obtained using a Hewlett-Packard 5890II chromatograph (HP-5, 5% phenylmethylsiloxane, 0.25 mm i.d. \(\times \) 30.0 m, film thickness 0.25 \(\mu \)m) connected to a Hewlett-Packard 5972A mass selective detector. Thermogravimetric analysis (TGA) of the polymer sample was performed on a Perkin-Elmer 7 Series thermal analysis system under argon flow. The polymer sample was heated from 25 to 900°C at a rate of 20°C/min. Ceramic residue yield is reported as the percentage of the sample remaining after completion of the heating cycle.

2.2. Infrared Instrumentation

Infrared spectra were obtained using a Perkin-Elmer 1600 series FT-IR spectrometer. Proton NMR spectra were recorded on a Varian Gemini 300 spectrometer using CDCl\(_3\)/CH\(_2\)Cl\(_2\) as a reference at 7.24 ppm downfield from TMS. GC/MS data were obtained using a Hewlett-Packard 5890II chromatograph (HP-5, 5% phenylmethylsiloxane, 0.25 mm i.d. \(\times \) 30.0 m, film thickness 0.25 \(\mu \)m) connected to a Hewlett-Packard 5972A mass selective detector. Thermogravimetric analysis (TGA) of the polymer sample was performed on a Perkin-Elmer 7 Series thermal analysis system under argon flow. The polymer sample was heated from 25 to 900°C at a rate of 20°C/min. Ceramic residue yield is reported as the percentage of the sample remaining after completion of the heating cycle.

2.3. Redistribution/Dehydrocoupling of \(n\)-\(\text{Bu}_3\text{SnH} \) Catalyzed by \(\text{Cp}_2\text{MCl}_3/\text{Red-Al} \) (\(M = \text{Ti, Zr, Hf} \))

The following procedure is the representative of redistribution/dehydrocoupling of \(n\)-\(\text{Bu}_3\text{SnH} \) with the group 4 metalloocene \(\text{Cp}_2\text{MCl}_3/\text{Red-Al} \) (\(M = \text{Ti, Zr, Hf} \)) combination catalysis. \(n\)-\(\text{Bu}_3\text{SnH} \) (0.50 g, 0.86 mmol) was added to a Schlenk flask containing \(\text{in situ-generated} \) dark purple catalytic mixture of \(\text{Cp}_2\text{TiCl}_3 \) (6.5 mg, 0.026 mmol) and Red-Al (6.7 \(\mu \)L, 0.026 mmol) which was protected from fluorescent room light because the products might be photochemically sensitive. The violet reaction mixture was heated at 70°C to turn green instantly, and the reaction medium became slowly viscous. The catalyst was inactivated after 72 hrs by exposure to the air for a few minutes. The translucent viscous yellow-orange material was washed well with dry THF and dried at reduced pressure to give 85 mg (17% yield) of a pale yellow solid which was insoluble in most organic solvents. The combined washing solutions were pumped to dryness and the resulting oil was passed rapidly through a reverse phase silica gel column (70-230 mesh, 20 cm \(\times \) 2 cm) with 100 mL of hexane used as the eluent. The eluent was evaporated in vacuo to yield 0.384 g (77% yield) of a clear pale yellow oil. For the solid: IR (KBr pellet, cm\(^{-1}\)): 1808 w (nSn-H); TGA ceramic residue yield: 38% at 400°C and 33% at 900°C (grey solid), onset temperature for decomposition = 300°C. For the oil: IR (neat, KBr cm\(^{-1}\)): 177 (100, BuSnH).}

3. Results and Discussion

Dehydrocatenation of \(n\)-\(\text{Bu}_3\text{SnH} \) with 3 mol% of the \(\text{Cp}_2\text{MCl}_3/\text{Red-Al} \) (\(M = \text{Ti, Zr, Hf} \)) combination catalysts took place very slowly at ambient temperature, and upon heating at 70°C the reaction mixture became slowly viscous over 3 days (Eq 1).

\[
\text{n-Bu}_3\text{SnH} \xrightarrow{H_2} (\text{n-Bu}_3\text{Sn}) _2 + H(\text{n-Bu}_3\text{Sn})_2 \to H(\text{n-Bu}_3\text{Sn})_2 + (\text{n-Bu}_3\text{Sn}) _2 \to (\text{n-Bu}_3\text{Sn})_4
\]

The products were isolated in high yield as two phases after workup including washing and flash chromatography. Hexabutyldistannane (\(n\)-\(\text{Bu}_3\text{Sn})_2 \), was obtained in 77-82% yield as a clear pale yellow oil. Polystannane was acquired in 13-17% yield as a pale yellow solid which was insoluble in most organic solvents. The TGA ceramic residue yield at 900°C of the insoluble solids were ca. 33%. The redistribution/dehydrocoupling reactions of \(n\)-\(\text{Bu}_3\text{SnH} \) with the group 4 metalloocene combinations are given in Table 1.

The IR spectra of the polymeric solids exhibit a very
A weak νSn-H band at 1808 cm⁻¹. The ¹H NMR spectra of (n-Bu₂Sn₃) show resonances centered at 0.85, 1.26, 1.50 ppm assigned to CH₃, CH₂CH₃, and Sn-CH₂, respectively. The IR spectra of the hexabutyldistannane do not exhibit a νSn-H band at 1808 cm⁻¹. The mass spectrum of the hexabutyldistannane shows fragmentations of 581 (0.5, M⁺), 425 (8, Bu₃SnOSnBu⁻), 289 (30, Bu₂Sn⁻), 233 (42, Bu₂Sn⁺), 177 (100, BuSnH⁺), and 133 (95, CH₂Sn⁻). The clear pale yellow oily products were clearly identified as hexabutyldistannane by comparing with ¹H NMR, IR, MS spectral data of authentic sample independently prepared according to the literature procedure. However, as seen in the MS fragmentation pattern, the hexabutyldistannane was contaminated with small amount of (n-Bu₂Sn)O. It is well known that (n-Bu₂Sn) can be easily oxidized to (n-Bu₂Sn)O in the presence of moisture.

We initially expected that the catalytic dehydrocoupling of the sterically bulky n-Bu₂SnH by the group 4 could occur hardly to produce single product (n-Bu₂Sn)₂ because the dehydrocoupling reactivity of hydrosilanes is well known to decrease drastically in the order of primary > secondary >> tertiary. As seen in Table 1 and Table 2, the group 4 metalloocene combination catalysts in the dehydrocoupling of n-Bu₂SnH produce the expected product, (n-Bu₂Sn)₂, as a major product along with the redistribution/dehydrocoupling product, cross-linked insoluble polystannane, as a minor product. Red-Al (or Vitride; sodium bis(2-methoxyethoxy)aluminum hydride) is known to catalyze the exchange reaction of di- and trihydrosilanes and the oligomerization of disilanes, catalyzed by inorganic hydrides (e.g. NaH, KH, etc). Corriu et al. suggested a mechanism via the intermediacy of a pentacoordinated hydrosilyl anion, which is formed by addition of hydride (H⁻) on the silanes. We recently described an intriguing redistribution of bis- and tris(silyl)methanes with Si-C-Si linkages, catalyzed by Red-Al.

We believe that a small portion of n-Bu₂SnH may be disproportionated into n-BuSnH and n-Bu₂SnH₂ in the presence of Red-Al, n-Bu₂SnH may be immediately dehydrocoupled with n-Bu₂SnH₂ may be immediately dehydrocoupled with n-Bu₂SnH₂ to produce soluble copolystannane, (n-BuSnH), which backbone Sn-H may subsequently undergo the cross-linking process. The endocrine possibility of the polystannanes is under investigation.

Table 1. Characterization of catalytic redistribution/dehydrocoupling of n-Bu₂SnH with group 4 transition metal complexes

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>% yield</th>
<th>Sn₂⁺</th>
<th>Sn⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cp₂TiCl₂/Red-Al</td>
<td>77</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Cp₂TiCl₂/n-BuLi</td>
<td>65</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Cp₂ZrCl₂/Red-Al</td>
<td>81</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Cp₂HCl₂/Red-Al</td>
<td>82</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

a [M]/[Sn]=0.03; heating at 70°C for 3 days. b Yield of THF-soluble product. c Yield of THF-insoluble product.

4. Conclusions

The sterically bulky n-Bu₂SnH, an endocrine disruptor, was slowly transformed by the group 4 Cp₃MCl/Red-Al (M = Ti, Zr, Hf) to produce two phases of products: one is an insoluble cross-linked solid, polystannane in 7-23% yield as minor product via redistribution/dehydrocoupling combination process, and the other is an oil, hexabutyldistannane in 69-90% yield as major product via simple dehydrocoupling process. One might naturally think that the redistribution/dehydrocoupling process first produced a low-molecular-weight oligo-
tannane possessing partial backbone Sn-H bonds which then underwent an extensive cross-linking reaction of backbone Sn-H bonds, leading to an insoluble polys-tannane. This provides first exciting example of redistribution/dehydrocoupling of a tertiary stannane catalyzed by early transition metalloccenes.

Acknowledgements

This research was supported by the IPET (Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries) funded by the Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea (Technology Commercialization).

References

 Redistribution/Dehydrocoupling of Endocrine n-Bu$_3$SnH to Polystannanes Catalyzed by Group 4 Metallocene Complexes

