Effects of Ginsenoside Rg3 Epimers on Swine Coronary Artery Contractions

Jong-Hoon Kim and Seung-Yeol Nah
Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 143-701
(Received August 29, 2005; Accepted September 7, 2005)

Abstract: The previous reports demonstrated that ginseng saponins, active ingredient of Panax ginseng, inhibited blood vessel contraction induced by various hormones or high K+. Recently, we demonstrated that 20(R)- and 20(S)-ginsenoside Rg3 regulate ion channel activities with differential manners. The aim of this study was to examine whether ginsenoside Rg3 isomers also show differential effects on swine coronary artery contraction responses induced by high K+, serotonin (5-HT) or acetylcholine. Treatment of 20(S)- but not 20(R)-ginsenoside Rg3 caused a concentration-dependent relaxation of coronary artery contracted by 25 mM KCl. 20(S)- and 20(R)-ginsenoside Rg3 induced significant relaxations of coronary artery contraction induced by 5-HT (3 μM) in the presence of endothelium with concentration-dependent manner and, also in the absence of endothelium only 20(S)-ginsenoside Rg3 induced a strong inhibition of coronary artery contraction induced by 5-HT in a concentration-dependent manner. 20(S)-ginsenoside Rg3 caused relaxation of coronary artery in the absence and presence of endothelium. In contrast, treatment of 20(S)- and 20(R)-ginsenoside Rg3 (100 μM) did not show significant inhibition of coronary artery contraction induced by acetylcholine (0.01 to 30 μM) in the presence of endothelium, whereas both isomers caused significant inhibition of coronary artery contraction induced by acetylcholine (0.01 to 30 μM) in the absence of endothelium in a concentration-dependent manner. These findings indicate that 20(S)- or 20(R)-ginsenoside Rg3 exhibits differential relaxation effects of swine coronary artery contractions caused by high K+, acetylcholine, and 5-HT treatment and that this differential vasorelaxing effects of ginsenoside Rg3 isomers also might be dependent on endothelium.

Key words: Panax ginseng, ginsenoside Rg3, epimers, coronary artery, vasorelaxation

INTRODUCTION

Coronary artery disease (CAD) is a leading cause of morbidity and mortality throughout the world. A variety of biomedical and psychologic factors are associated with an increased risk for its occurrence1,2). During the past decade, our understanding of the pathophysiology of CAD has undergone a remarkable evolution.

Heart failure occurs when abnormalities of cardiac function cause the heart to fail to pump blood at a rate needed to meet metabolic requirements under normal cardiac filling pressure. CAD, resulting in myocardial ischemia, is its most common cause in western populations3). Those who survive myocardial infarction resulting from CAD have an approximate threefold increased risk of developing left ventricular systolic dysfunction (systolic ejection fraction <45%)4) and the likelihood of survival from myocardial infarction almost doubled in some countries5).

Ginseng, a widely recognized herbal drug, has been reported to have a wide range of therapeutic and pharmacologic uses. Ginseng's genus name Panax is derived from the Greek words pan (all) and akos (cure), meaning cure-all. Ginseng root has been used extensively in Korean and Chinese medicine and has become increasingly popular in the western world for its alleged tonic effect and possible curative and restorative properties. There are increased clinical evidences concerning the potential benefits of ginseng roots in cardiovascular diseases. Administration of ginsenosides, a mixture of saponins extracted from Panax ginseng, decreases blood pressure in both hypertensive patients and experimental animals6,7). The antihypertensive effect of ginsenosides may be due, at least in part, to their ability to inhibit vascular tone. Indeed, ginsenosides, with concentration-dependent manner, relax the isolated rabbit pulmonary arteries contracted with prostaglandin F2α8) and the isolated rabbit and rat aorta contracted with phenylephrine7). The inhibitory effect of ginsenoside requires the presence

2To whom correspondence should be addressed.
(Tel) +82-2-450-4154; (Fax) +82-2-450-3037
(E-mail) synah@konkuk.ac.kr
of a functional endothelium and is mediated by an increased formation of endothelium-derived nitric oxide\textsuperscript{7). Studies examining the effect of various purified ginsenosides on vascular tone identified ginsenoside \(\text{Rg}_3 \), a triterpene glycoside which chemically belongs to the protopanaxadiol ginsenoside group, as the most potent vasodilator\textsuperscript{9). Recently, Kim et al.\textsuperscript{9) found that, in addition to the endothelium-dependent relaxation, ginsenoside \(\text{Rg}_3 \) also inhibited the tone of aortic rings without endothelium contracted with 25 mM KCl, whereas only a small relaxation was found in rings contracted with phenylephrine. Ginsenoside \(\text{Rg}_3 \) exists as stereoisomers; \(20(R)-\)ginsenoside and \(20(S)-\)ginsenoside are epimers of each other depending on the position of the hydroxyl group on carbon-2010 (Fig. 1). Recently, we have demonstrated that \(20(R)- \) and \(20(S)-\)ginsenoside \(\text{Rg}_3 \) regulates ion channel activities with differential manners.

In this study, we investigated the effects of \(20(S)- \) and \(20(R)-\)ginsenoside \(\text{Rg}_3 \) on swine coronary arteries with or without endothelium and found that \(20(S)- \) or \(20(R)-\)ginsenoside \(\text{Rg}_3 \) exhibits differential relaxation effects of swine coronary artery contracted by high K\(^+\), 5-HT or acetylcholine treatment and that this differential relaxation effects of ginsenoside \(\text{Rg}_3 \) isomer also might be dependent or independent on the presence of endothelium.

MATERIALS AND METHODS

Materials

Ginsenoside \(\text{Rg}_3 \) was isolated from an extract of ginsenosides, prepared from \textit{P. ginseng}, by the previously published procedures\textsuperscript{11). KCl, acetylcholine and serotonin were purchased from Sigma (St. Louis, MO, USA).

Organ chamber studies

The inhibitory effects of ginsenoside \(\text{Rg}_3 \) on swine coronary artery contracted by KCl, 5-HT and acetylcholine were evaluated on organ bath chamber. Swine hearts were obtained at an abattoir and were transferred to our laboratory immersed in ice-cold Tyrode solution. The left circumflex coronary (LCC) arteries were carefully dissected and the LCC arteries were placed in modified physiological salt solution (PSS) containing (in mM) NaCl, 118.3; KCl, 4.7; MgSO\(_4\), 1.2; KH\(_2\)PO\(_4\), 1.2; CaCl\(_2\), 2.5; NaHCO\(_3\), 25.0; CaEDTA, 0.016; and glucose, 11.1 (control solution). The LCC arteries were cleaned of loose connective tissue and then cut into eight rings 2-3 mm wide. Coronary artery was divided into with or without endothelium. The endothelium was removed mechanically. When the contraction had stabilized by 25 mM KCl, 10 \(\mu \text{M} \) acetylcholine was added to test for the presence or absent of the endothelium. And, the LCC arteries rings were suspended horizontally between two stainless steel stirrups in organ chambers filled with 3 ml of 37.8, pH 7.4 PSS bubbled with 95% O\(_2\) and 5% CO\(_2\). One of the stirrups was anchored to the organ chamber and the other was connected to a force transducer (Narco bio-system) for the recording of isometric tension. The LCC arteries rings were stretched progressively to the optimal tension (2 g) before the addition of 25 mM KCl, 5-HT (1 to 300 \(\mu \text{M}\)) and acetylcholine (0.01 to 30 \(\mu \text{M}\)).

Measurement of isometric tension on swine coronary artery by high K\(^+\), 5-HT, or acetylcholine

In 25 mM KCl-induced contraction studies, after the plateau of the contraction elicited by 25 mM KCl was obtained, the aortic rings were rinsed three times in warm PSS (37.8\(^\circ\)C). After a 30 min resting period in PSS, the aortic rings were exposed again to 25 mM KCl. After a stable plateau of vasoconstriction had been reached in the presence of 25 mM KCl, the rings were stabilized by PSS. This response was repeated three times. Next, we tested...
drug effects; i.e. after following preincubation for 1 min with 20(S)- or 20(R)-ginsenoside Rg3 of 1, 3, 10, 30, 100 and 300 μM, respectively, the rings were again contracted by 25 mM KCl to test inhibition on contraction of coronary artery. A concentration-response curve was obtained from the contraction of coronary artery in the different concentration of ginsenoside Rg3 epimers with solution containing 25 mM KCl. Inhibitory effects of 20(S)- or 20(R)-ginsenoside Rg3 were expressed as a percentage of the response to a maximal value contracted by 25 mM KCl. In all cases, each experiment was repeated four to five times.

We also evaluated the inhibitory effects of ginsenoside Rg3 epimers on contractive response induced by 3 μM 5-HT, following dose-dependent manner of 20(S)- or 20(R)-ginsenoside Rg3 on swine coronary artery. Once the plateau of the contraction elicited by 3 μM 5-HT was obtained, the coronary artery rings were rinsed three times for 30 min with PSS (37.8). After a resting period for 30 min, the rings were exposed again to 3 μM 5-HT. After contraction by 3 μM 5-HT, the rings were stabilized by warm PSS. And, the rings were preincubated for 1 min with 20(S)- or 20(R)-ginsenoside of 1, 3, 10, 30, 100 and 300 μM, respectively, and the rings were contracted by 3 μM 5-HT to test contraction for the presence or absent of the endothelium, respectively. Thus, after preincubation of 20(S)- or 20(R)-ginsenoside Rg3 in a concentration-dependent manner, contractive responses for 3 μM 5-HT were obtained. The amplitude of contraction induced by 3 μM 5-HT was measured for each concentration. The inhibitory effects of 20(S)- or 20(R)-ginsenoside Rg3 on contraction by 3 μM 5-HT were expressed as a percentage of the response to a maximal value contracted by 3 μM 5-HT administered initially in each aorta. In all cases, each experiment was repeated four to five times.

Also, the inhibitory effects of ginsenoside Rg3 epimers in the contractive response to acetylcholine was investigated in swine coronary arteries with and without endothelium. After a stable plateau of vasoconstriction had been reached by 25 mM KCl, the rings were stabilized by PSS for 30 min. This response was repeated three times. And, the rings were preincubated for 1 min with 100 μM 20(S)- or 20(R)-ginsenoside Rg3, respectively, and the rings were contracted by acetylcholine with dose-dependent manner (0.01, 0.1, 0.3, 1, 3, 10 and 30 μM) to test inhibitory effects of 20(S)- or 20(R)-ginsenoside Rg3 on contraction of swine coronary artery for the presence or absence of the endothelium, respectively. Acetylcholine of 0.01, 0.1, 0.3, 1, 3, 10 and 30 μM were added to the bath in a cumulative fashion, respectively. The response to each concentration was allowed to reach a plateau before the addition of the next concentration of acetylcholine. The amplitude of contraction induced by acetylcholine was measured for each concentration. The inhibitory effects of 20(S)- or 20(R)-ginsenoside Rg3 on contraction by acetylcholine were expressed as a percentage of the response to a maximal value contracted by 25 mM KCl administered initially in each aorta. In all cases, each experiment was repeated four to five times.

Fig. 2. The inhibitory effect of 20(S)- (■) and 20(R)- (●) ginsenoside Rg3 in coronary artery with and without endothelium constricted with 25 mM KCl. The small concentration-dependent inhibition evoked by ginsenoside Rg3 in endothelium-nuded coronary artery rings was also shown. The constriction induced by 25 mM KCl was inhibited by 20(S)- and 20(R)-ginsenoside Rg3 with concentration-dependent manner. Data are expressed as mean±S.E.M (n=4-5/dose). Significant from 20(R)-ginsenoside Rg3 (*p<0.01).
RESULTS

Effects of 20(S)- and 20(R)-ginsenoside Rg3 on high K⁺-induced swine coronary artery contraction

In the previous study, because ginsenoside Rg3 isomers showed differential effects between voltage-dependent ion channels and ligand-gated ion channels, we first examined the effects of ginsenoside Rg3 isomers in the inhibition of contraction induced by high K⁺. In the presence of 25 mM KCl, the addition of 20(S)-ginsenoside Rg3 (1 to 300 μM) produced a concentration-dependent relaxation of swine coronary artery in the both conditions of absence and presence of endothelium (Fig. 2A and 2B). The inhibitory effect of 20(S)-ginsenoside Rg3 on coronary artery with endothelium was 2.00±0.89, 2.20±1.24, 9.20±1.74, 21.8±2.15, 72.6±6.65 and 76.4±5.97% at 1, 3, 10, 30, 100 and 300 μM, respectively. Also, % the inhibitory effect of 20(S)-ginsenoside Rg3 on coronary artery without endothelium was 3.10±1.23, 2.81±2.43, 5.34±3.55, 12.83±3.71, 68.45±7.87 and 72.16±8.38% at 1, 3, 10, 30, 100 and 300 μM, respectively. Thus, the inhibitory effect of 20(S)-ginsenoside Rg3 on high K⁺-induced contraction was independent in the presence of endothelium. However, 20(R)-ginsenoside Rg3 exhibited a minimal inhibition of high K⁺-induced contractions with dose-dependent manner on coronary artery with or without endothelium. The inhibitory effect of R-form on coronary artery with endothelium was 0.40±0.41, 1.00±0.77, 4.20±1.42, 8.40±2.97, 26.83±6.63 and 30.80±7.59% at 1, 3, 10, 30, 100 and 300 μM, respectively. Also, the inhibitory effect of R-form on coronary artery without endothelium was 2.13±1.76, 1.72±2.83, 2.75±3.81, 4.87±5.43, 18.78±8.58 and 22.65±6.37% at 1, 3, 10, 30, 100 and 300 μM, respectively (Fig. 2B). IC₅₀ of 20(S)-ginsenoside Rg3 was 42.08±6.65 and 46.15±7.02 μM, and IC₅₀ of 20(R)-ginsenoside Rg3 was 47.59±8.48 and 53.90±13.64 μM on coronary artery in the presence and absence of endothelium, respectively.

Effects of (S)- and (R)-ginsenoside Rg3 on 5-HT-induced swine coronary artery contraction.

As a next step, we used another ligand, 5-HT, and did further study to know whether or not 20(S)- or 20(R)-ginsenoside Rg3 also exerts their inhibitory effects on 5-HT-induced coronary artery contraction. As shown in Fig. 3A and 3B, treatment of 20(S)-ginsenoside Rg3 showed a slight more potent inhibition in 5-HT-induced coronary artery contraction than that of 20(R)-ginsenoside Rg3, in the presence or absence of endothelium with dose-depen-

dent manner. Inhibition by 20(S)-ginsenoside Rg3 on 5-HT-induced coronary artery contraction was 0.00±0.00, 1.75±1.18, 10.50±2.46, 24.74±4.26, 54.78±5.02 and 63.35±5.54% at 1, 3, 10, 30, 100 and 300 μM, respectively in the presence of endothelium. IC₅₀ of 20(S)-ginsenoside Rg3 was 40.75±5.30 μM in the presence of endothelium. Inhibition by 20(R)-ginsenoside Rg3 on 5-HT-induced coronary artery contraction was 0.00±0.00, 0.00±0.00, 4.20±1.65, 14.01±2.54, 31.65±7.11 and 45.75±3.77% at 1, 3, 10, 30, 100 and 300 μM, respectively in the presence of endothelium. EC₅₀ was 72.89±7.22 μM.

Interestingly, in the absence of endothelium, the inhibi-

Fig. 3. The inhibitory effect of 20(S)-(■) and 20(R)-(●) ginsenoside Rg3 in coronary artery with and without endothelium constricted with 3 μM 5-HT. Also, the constriction induced by 5-HT was inhibited by 20(S)- and 20(R)-ginsenoside Rg3 with dose-dependent manner. Data are expressed as means±S.E.M (n=4-5/dose). Significant from 20(R)-ginsenoside Rg3 (p<0.01).
The inhibitory effect of 20(S)-ginsenoside Rg₃ on 5-HT-induced coronary artery contraction still was maintained in a concentration-dependent manner. Thus, % Inhibition by 20(S)-ginsenoside Rg₃ on 5-HT-induced coronary artery contraction was 0.00±0.00, 0.58±2.13, 5.95±3.92, 18.65±5.74, 54.53±6.43 and 58.48±7.18% at 1, 3, 10, 30, 100 and 300 μM, respectively. IC₅₀ of 20(S)-ginsenoside Rg₃ was 40.95±4.34 μM (Fig. 3B.) Also, in the absence of endothelium, the inhibitory effect of 20(R)-ginsenoside Rg₃ on 5-HT-induced coronary artery contraction was greatly attenuated. Inhibition of 20(R)-ginsenoside Rg₃ on 5-HT-induced coronary artery contraction was 0.00±0.00, 0.00±0.00, 0.58±0.37, 7.51±3.83, 18.68±9.59 and 23.76±5.88% at doses of 1, 3, 10, 30, 100 and 300 μM, respectively (Fig. 4B). IC₅₀ of 20(R)-ginsenoside Rg₃ was 50.23±4.05 μM.

Effects of (S)- and (R)-ginsenoside Rg₃ on swine acetylcholine-induced coronary artery contraction.

Since 20(S)-ginsenoside Rg₃ inhibited the coronary artery contraction-induced by depolarization with high K⁺ and by 5-HT, we next examined whether 20(S)- and 20(R)-ginsenoside Rg₃ could also inhibit acetylcholine-induced coronary artery contraction (Fig. 4). In contrast to the inhibition by 20(S)-ginsenoside Rg₃ on depolarization- or 5-HT-induced coronary artery contraction, both 20(S)- and 20(R)-ginsenoside Rg₃ had no effect on acetylcholine-induced coronary artery contraction in the presence of endothelium (Fig. 4A). In contrast, both 20(S)-ginsenoside Rg₃ inhibited acetylcholine-induced swine coronary artery contraction in the absence of endothelium (Fig. 4B). % Inhibition of 20(S)-ginsenoside Rg₃ on acetylcholine-induced coronary artery contraction was 0.00±0.00, 0.87±1.98, 1.85±1.72, 17.91±4.76, 37.68±8.63, 48.5±6.42 and 52.15±4.78% at 0.01, 0.1, 0.3, 1, 3, 10 and 30 μM, respectively in the absence of endothelium (Fig. 4B). EC₅₀ of 20(S)-ginsenoside Rg₃ was 1.58±0.09 μM.

Also, % inhibition of 20(R)-ginsenoside Rg₃ on acetylcholine-induced coronary artery contraction in the absence of endothelium was 0.00±0.00, 0.0±0.00, 1.76±1.85, 19.56±5.87, 29.38±6.19, 45.96±4.68 and 48.17±6.45% at doses of 0.01, 0.1, 0.3, 1, 3, 10 and 30 μM, respectively (Fig. 4B). EC₅₀ of 20(R)-ginsenoside Rg₃ was 1.87±0.14 μM. Thus, the inhibitory potency on acetylcholine-induced coronary artery contraction between ginsenoside Rg₃ epimers did not also show a significant difference.

DISCUSSION

Although ginseng and its active constituents, ginsenosides, have gained increased popularity worldwide for a myriad of beneficial effects, the underlying mechanisms are still unclear. The information regarding the effects of ginseng on cardiovascular diseases is even more scattered. Herein, we investigated the effect of ginsenosides Rg₃ epimers [20(S)- and 20(R)-ginsenoside Rg₃] against contraction of coronary artery induced by a various agents in
the absence or presence of endothelium.

In the present study, we demonstrated that (1) 20(S)-
ginsenoside Rg3 inhibited high K⁺- and 5-HT-induced
swine coronary artery contraction in a concentration-
dependent manner, (2) the inhibitory effect of 20(S)-gin-
senoside Rg3 on high K⁺- and 5-HT-induced swine coro-
nary artery contraction is independent of the presence of
endothelium, (3) 20(R) or 20(S)-ginsenoside Rg3 had no
effect on acetylcholine-induced swine coronary artery
contraction with endothelium but 20(R)- or 20(S)-ginse-
noside Rg3 inhibited acetylcholine-induced swine coro-
nary artery contraction with dose-dependent manner
without endothelium, (4) finally, (S)20-ginsenoside Rg3
was more effective in the inhibition of high K⁺- and 5-HT-
induced swine coronary artery contractions than (R)20-
ginsenoside Rg3, whereas 20(R)-ginsenoside Rg3 showed
almost same inhibitory effects with 20(S)-ginsenoside Rg3
in the inhibition of acetylcholine-induced swine coronary
artery contractions without endothelium. These results
indicate that ginsenoside Rg3 epimers showed differential
effects on agonist or high K⁺-induced swine coronary
artery contractions and that endothelium might play a role
in ginseng saponins-induced blood vessel relaxation.

Nitric oxide (NO) is a radical produced form L-arginine
via NO synthase (NOS), and also serves as an important
cellular second messenger. And, NO produced in
the vessel was responsible for the vascular relaxation.
Therefore, NO production may contribute to the enhancement
of vascular relaxation due to ginsenoside Rg3 epimers
treatment. The role of NO production by ginsenoside Rg3
epimers is not yet clear but the role of NO production by
ginsenoside Rg3 in vascular relaxation might be involved
in ginsenoside Rg3 epimers-induced coronary artery
contraction. For example, the previous study indicates that, in
addition to the endothelium-dependent relaxation, ginsene-
sosides were also able to inhibit directly vascular smooth
muscle tone in rat aorta. In the present study, although
20(S)-ginsenoside Rg3 still caused the inhibition in high
K⁺- and 5-HT-induced swine coronary artery contraction
without endothelium, both ginsenoside Rg3 epimers had
no effect on acetylcholine-induced coronary artery
contraction with endothelium. Thus, these results indicate that
endothelium-dependent and independent relaxation path-
ways in response to ginsenoside Rg3 might exist in swine
coronary artery and further indicate that ginsenoside Rg3
epimers might utilize the different mechanisms in inhibition
of acetylcholine-induced swine coronary artery con-
traction.

On the other hand, similar observations were obtained
in endothelium-intact coronary artery or in endothelium-
denuded coronary artery. The inhibitory effect ginsenoside
Rg3 epimers on constriction evoked by 3 μM 5-HT indi-
cated that the effect on coronary artery with endothelium
involved NO-dependent mechanism as demonstrated by
Summer,13 Martin et al.,14 and Wallis and Martin.15 It
is known that the presence or absence of functional endo-
thelium can influence contractile responses in blood
vessels.16,17,18,19 Thus, these data suggest that a dual
endogenous inhibitory mechanism is present in swine coro-
nary artery and that products of the endothelium-derived
vascular relaxant factor (EDRF)-NO pathway may interact
to regulate 5-HT stimulation via 5-HT receptors, as obtained
by Yamano et al.,20 Hinton et al.,21 and Nieto et al.22

In present results, the endothelium-dependent contrac-
tion induced by 5-HT was antagonized by 20(S)- and
20(R)-ginsenoside Rg3 on swine coronary artery with
endothelium. Moreover, the inhibitory effect of 20(S)-gin-
senoside Rg3 on constriction of swine coronary artery
induced by 5-HT was not related to the presence of endo-
thelium, though the arterial contraction by 5-HT in the
absence of endothelium was slightly antagonized by
20(R)-ginsenoside Rg3.

In summary, we found that 20(S)- and 20(R)-ginsenos-
side Rg3 inhibited high K⁺-, 5-HT-, and acetylcholine-
induced swine coronary artery contraction with differen-
tial manner and that the inhibitory effects of 20(S)-
and 20(R)-ginsenoside Rg3 on high K⁺- or agonists-induced
swine coronary artery contraction were dependent or
independent on endothelium. Finally, 20(S)- rather than
20(R)-ginsenoside Rg3 might be an useful agent for the
relaxation of blood vessels that could be contracted by
various agents.

REFERENCE

1. Dubbert, P.M., Carithers, T. and Sumner, A.E.: Obesity,
physical inactivity, and risk for cardiovascular disease. Am

2. Greci, E.D.: Pathophysiology and investigation of coronary

ventricular systolic dysfunction among patients with risk fac-

5. Rasmussen, S., Aalbrehm, S. and Rosen, M.: Case-fatality
rates for myocardial infarction declined in Denmark and
(2004).

