Neuroprotective Effects of Ginsenoside Rg₃ against 24-OH-cholesterol-induced Cytotoxicity in Cortical Neurons

Yoon Seok Roh¹#, Hyoung Bae Kim¹#, Chang-Won Kang¹, Bum Seok Kim¹, Seung-Yeol Nah², and Jong-Hoon Kim¹*

¹Department of Veterinary Physiology and Department of Veterinary Pathology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Korea
²Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea

Ginsenoside Rg₃ (Rg₃), one of the active ingredients in Panax ginseng, attenuates NMDA receptor-mediated currents in vitro and antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. In the present study, we examined the neuroprotective effects of Rg₃ on 24-hydroxycholesterol (24-OH-chol)-induced cytotoxicity in vitro. The results showed that Rg₃ treatment significantly and dose-dependently inhibited 24-OH-chol-induced cell death in rat cultured cortical neurons, with an IC₅₀ value of 28.7±7.5 μm. Furthermore, the Rg₃ treatment not only significantly reduced DNA damage, but also dose-dependently attenuated 24-OH-chol-induced caspase-3 activity. To study the mechanisms underlying the in vitro neuroprotective effects of Rg₃ against 25-OH-chol-induced cytotoxicity, we also examined the effect of Rg₃ on intracellular Ca²⁺ elevations in cultured neurons and found that Rg₃ treatment dose-dependently inhibited increases in intracellular Ca²⁺, with an IC₅₀ value of 40.37±12.88 μm. Additionally, Rg₃ treatment dose-dependently inhibited apoptosis with an IC₅₀ of 47.3±14.2 μm. Finally, after confirming the protective effect of Rg₃ using a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, we found that Rg₃ is an active component in ginseng-mediated neuroprotection. These results collectively indicate that Rg₃-induced neuroprotection against 24-OH-chol in rat cortical neurons might be achieved via inhibition of a 24-OH-chol-mediated Ca²⁺ channel. This is the first report to employ cortical neurons to study the neuroprotective effects of Rg₃ against 24-OH-chol. In conclusion, Rg₃ was effective for protecting cells against 24-OH-chol-induced cytotoxicity in rat cortical neurons. This protective ability makes Rg₃ a promising agent in pathologies implicating neurodegeneration such as apoptosis or neuronal cell death.

Keywords: Ginsenoside Rg₃, Cortical neurons, 24-OH-cholesterol oxides, Excitotoxicity, Neuroprotection

INTRODUCTION

Cholesterol and oxidized lipoproteins have been associated with the genesis of diseases [1], and cholesterol oxides (also termed oxysterols), the oxygenated derivatives of cholesterol, might be causative agents [2-7]. An excessive amount of cholesterol oxides damages endothelial cells [8,9], smooth muscle cells [2,10], and fibroblasts [11,12], and accumulating evidence suggests that cholesterol oxides are toxic to neural cells in nerve growth factor-differentiated neuronal PC12 cells as a model for sympathetic neurons [13,14], cultured cerebellar granule cells [1], and microglial cells [15]. Although the molecular mechanisms by which cholesterol

*Corresponding author
E-mail: jhkim1@chonbuk.ac.kr
Tel: +82-63-270-2563, Fax: +82-63-270-3780
#Authors contributed equally to this work.

Received 12 Jul. 2010, Revised 13 Aug. 2010, Accepted 16 Aug. 2010
oxides impair neuronal cells and promote neuropathy are still not clearly understood, it is believed that a high concentration of cholesterol oxides is the main cause of the neurodegenerative injury by inducing increased oxidative stress and decreasing cell viability [1,15]. The conversion of cholesterol into the polar metabolite 24-hydroxycholesterol (24-OH-chol) appears to be one of the most important mechanisms for eliminating cholesterol from the brain, where concentrations of up to 30 μm free 24-OH-chol are present and act as a neurotoxin [16]. Panax ginseng, which is a tonic in traditional medicine, contains more than 30 types of active ingredients, the ginsenosides [17]. Recently, ginsenosides have been shown to have protective effects against glutamate toxicity-induced neuronal and glial cell death. In rat cortical cultures, the ginsenosides Rb1 and Rg1 attenuate glutamate- and NMDA-induced neurotoxicity by inhibiting nitric oxide overproduction and malondialdehyde formation [18,19]. Ginsenoside Rb1 and Rg1 protect spinal neurons from glutamate- or kainite-induced excitotoxicity. In addition to neurons, Seong et al. [20] showed that ginsenosides attenuate glutamate-induced swelling in cultured rat astrocytes. Intracerebroventricular administration of ginsenoside Rb1 significantly inhibits the magnitude of long-term potentiation induced by strong tetanus in the dentate gyrus [21]. Furthermore, intrathecal ginsenoside pretreatment attenuates NMDA- or substance P-induced nociceptive behaviors in mice [22], and intraperitoneal ginsenoside pretreatment attenuates kainite-induced cell death in hippocampal neurons of rats [23]. Kim et al. [24] suggested that the neuroprotection of hippocampal neurons by ginsenoside against glutamate- or NMDA-induced excitotoxicity might be due to attenuation of the intracellular Ca\(^{2+}\) elevation and that among various ginsenosides, ginsenoside Rg3 (Rg3) is the most potent inhibitor of NMDA-induced intracellular Ca\(^{2+}\) elevation in hippocampal neurons. Furthermore, oral or intravenous administration of Rg3 exhibits significant neuroprotective effects against focal cerebral ischemic injury in rats. However, it is not yet known whether Rg3 exhibits a neuroprotective effect on 24-OH-chol-induced neurotoxicity in vitro [25,26]. Therefore, in the present study, we investigated whether Rg3 treatment could attenuate 24-OH-chol-induced neurotoxicity such as a decrease in cell viability and changes in intracellular Ca\(^{2+}\), oxidative stress, and apoptosis in rat cortical neurons.

Our data showed that Rg3 greatly contributed to the neuroprotective effects on 24-OH-chol-induced neurotoxicity, partly through its ability to inhibit changes in intracellular Ca\(^{2+}\), resulting in increased cell viability and reduced apoptosis.

MATERIALS AND METHODS

Materials

Fig. 1 shows the chemical structure of 20(S)-Rg3, which is kindly provided by the Korea Ginseng Cooperation (Daejon, Korea). All chemicals for rat cortical cell culture were purchased from Life Technologies (Grand Island, NY, USA). 24-OH-chol and all other chemical agents were purchased from Sigma (St. Louis, MO, USA), unless otherwise specified.

Preparation of cortical neurons

Mixed cortical cell cultures containing both neuronal and glial elements were prepared as previously described [27] from fetal mice at 14 to 17 day gestation. Dissociated cortical cells were plated in Primaria (Falcon) 15-mM multiwell vessels (approximately 0.4 × 10^6 cells/well) in Eagle’s minimal essential medium (Earle’s salts) supplemented with 10% heat-inactivated horse serum, 10% fetal bovine serum, and 2 mM glutamine, and to 20 mM glucose. Cultures were maintained at 37°C in a humidified CO-containing incubator (initial pH 7.4). After 5 to 10 days, non-neuronal cell division was halted by exposure to 10^{-5} M cytosine arabinoside for 1 day, and the cells were transferred to a maintenance medium identical to the plating media but lacking fetal serum. Subsequent media replacement was performed twice per week. Only mature (14 to 24 days in vitro) cortical cultures were selected for study; key comparisons were made on sister cultures derived from a single plating.

Measurement of cell death

Metabolic inhibition- or mitochondrial dysfunction-
induced cell death was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay [28]. Cortical cells were washed with serum-free medium and then incubated with 50 μM 24-OH-chol alone or in the presence of various concentrations of Rg3 for 24 hours at 37°C. Cortical cells were pretreated with Rg3 for 1 hour before exposure to 24-OH-chol. After a 24-hour incubation in serum-free culture medium, the cultures were assessed for viability. Cell viability was measured by detecting dehydrogenase activity retained in living cells using the MTT assay. An aliquot (50 μL) of MTT solution (1 mg/mL) in PBS was added directly to the cells, and the cells were incubated for 4 hours to allow the MTT to metabolize to formazan. The supernatant was then aspirated, and 100 μL of DMSO was added to dissolve the formazan. The optical density was measured with an automated spectrophotometric plate reader at a wavelength of 560 nm. Relative survival in comparison with untreated controls was then determined. In all cases, the Rg3 solutions were freshly prepared, and the final DMSO concentrations were <0.1%. DMSO did not have any detectable effect on cell survival in the vehicle-only group [29].

Measurements of intracellular Ca\(^{2+}\) concentration

The acetoxymethyl-ester form of fura-2 (fura-2/AM; Molecular Probes, Eugene, OR, USA) was used as the fluorescent Ca\(^{2+}\) indicator. Cortical cells were incubated for 40 to 60 minutes at room temperature with 5 μM fura-2/AM and 0.001% pluronic F-127 in a HEPES-buffered solution composed of (in mM): 150 NaCl, 5 KCl, 1 MgCl\(_2\), 2 CaCl\(_2\), 10 HEPES, and 10 glucose, with pH adjusted to 7.4 with NaOH. The cells were then washed with HEPES-buffered solution and placed on an inverted microscope (Olympus, Tokyo, Japan). Cells were illuminated using a xenon arc lamp, and excitation wavelengths (340 and 380 nm) were selected by a computer-controlled filter wheel (Sutter Instruments, Novato, CA, USA). Data were acquired every 2 to 5 seconds, and a shutter was interposed in the light path between exposures to protect the cells from phototoxicity. Emitter fluorescence was reflected through a 515 nm long-pass filter to a frame transfer-cooled CCD camera, and the ratios of emitted fluorescence were calculated using a digital fluorescence analyzer and converted to intracellular free Ca\(^{2+}\) concentrations ([Ca\(^{2+}\)]). Data were collected and analyzed using Universal Imaging software (West Chester, PA, USA) [24].

Intracellular malondialdehyde measurement

Malondialdehyde (MDA), a cell lipid peroxidation product, was assayed using the thiobarbituric acid fluorometric method [30] with 515 nm excitation/552 nm emission wavelengths and 1,1,3,3-tetramethoxypropane as the standard. Briefly, cortical cells were harvested and homogenized with 0.5% Triton X-100. The reaction mixture containing 300 mL of TCA buffer (0.25 N HCl/0.375% thiobarbituric acid/15% trichloroacetic acid/0.01% butyl hydroxytoluene) was mixed with cell lysate. After centrifugation, the supernatant was incubated in a shaking water bath at 85°C for 30 minutes, an equal amount of n-butanol was added, and the fluorometric measurement was performed. The protein concentration was determined by Lowry’s method.

TUNEL staining to detect DNA fragmentation

Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) was conducted using the In Situ Cell Death Detection kit (Roche Diagnostics GmbH, Mannheim, Germany) according to the manufacturer’s instructions, with minor modifications [29]. Briefly, cells were cultured on coverslips and divided into groups receiving control vehicle, 100 μM Rg3 alone, 50 μM 24-OH-chol alone, and 100 μM Rg3 + 50 μM 24-OH-chol. An Rg3 dose of 100 μM was determined to be the optimum for cell viability. One hour later, the 24-OH-chol alone group and the Rg3+24-OH-chol group were treated with 50 μM 24-OH-chol. After a 24-hour incubation, the cells were washed with PBS, fixed with 4% paraformaldehyde in PBS for 30 minutes, and permeabilized with 0.25% Triton X-100 for 10 minutes. The cells were rinsed with PBS and covered with a labeling reaction mixture containing terminal deoxynucleotidyl transferase for 60 minutes at 37°C. After three rinses with PBS, peroxidase was added and the cells were incubated for 30 minutes at 37°C, followed by three more rinses with PBS and a 10-minutes incubation with diaminobenzidine. Finally, the reactions were terminated by washing the cells with PBS, and the slides were mounted with glass coverslips. In each treatment group, 400 cells from 7 different fields (including TUNEL-negative and -positive neurons) were counted using an Olympus BX-51 light microscope (Olympus) at 40X magnification.

Caspase-3 activity assay

To confirm the results of the TUNEL assay, a second apoptosis marker (caspase-3 activity) was examined by immunocytochemistry. Briefly, cortical neurons were prepared in 24 well plates as described previously [31]. After 7 days, the cortical cells were washed with PBS (pH 7.4), blocked with 4% normal goat serum (Jackson
Effects of ginsenoside Rg3 on cortical neuron viability

Because 50 μm 24-OH-chol induces neurotoxicity [16], we first examined the preventive effect of Rg3 on 24-OH-chol-induced cytotoxicity using the MTT assay. Exposure of primary cultured cortical cells to 50 μm 24-OH-chol for 24 hours resulted in metabolic suppression, as shown by decreased mitochondrial reducing capacity on MTT, and cell viability decreased significantly by 45.88 ± 4.27% (**p < 0.01, compared with control) (Fig. 2). Pretreatment of cortical cells with Rg3 1 hour before 24-OH-chol treatment dose-dependently increased cell viability to 33.78 ± 6.57%, 42.76 ± 5.78%, 50.38 ± 7.03%, 71.82 ± 12.54%, 78.95 ± 7.73%, and 75.83 ± 8.76% in cultures receiving 1, 3, 10, 30, 100, and 300 μm Rg3, respectively (*p < 0.05, **p < 0.01) (Fig. 2). However, no significant differences were observed between groups treated with Rg3 doses of 1, 3, 10, 30, 100, and 300 μm, respectively, with levels in normal controls taken as 100% (Fig. 3). Therefore, treatment with 1, 3, or 10 μM Rg3 did not attenuate the 24-OH-chol-induced [Ca2+]i elevation, but 30, 100, and 300 μM Rg3 significantly and dose-dependently inhibited the [Ca2+]i elevation (IC50 = 40.37 ± 12.88 μM; *p < 0.05, **p < 0.01, n = 30.37) (Fig. 3). Interestingly, 300 μM Rg3 was slightly less neuroprotective against 24-OH-chol than 100 μM Rg3, although this difference was not statistically significant (Fig. 3). These results indicate that 50 μM 24-OH-chol elevated [Ca2+]i in cultured cortical neurons, and this effect was attenuated by Rg3 concentrations of 30, 100, and 300 μM.

Effects of ginsenoside Rg3 on intracellular malondialdehyde

Because oxysterols induce oxidative damage in cultured murine neurons [32], we also examined the preventive effect of Rg3 on 50 μM 24-OH-chol-induced neurotoxicity by determining the MDA content, a compound produced by lipid peroxidation during cellular oxidative stress. The MDA determination was performed

Data analysis

All numerical values are represented as means ± SEMs. Tests for statistical significance were performed on the data using the unpaired Student’s t-test. A p-value of < 0.05 was considered statistically significant.

RESULTS AND DISCUSSION

Inhibition of intracellular Ca2+ levels

We next investigated the mechanism of Rg3 protection against 24-OH-chol-induced neurotoxicity. We examined whether Rg3 could inhibit the 24-OH-chol-induced intracellular Ca2+ ([Ca2+]i) elevation in cultured cortical cells from each group were rinsed and incubated for 1 hour with FITC-conjugated AffinPure goat anti-rabbit IgG (1:100; Dako, Glostrup, Denmark) and examined by epifluorescence using a Zeiss Axioplan 2 microscope (Carl Zeiss, Inc., Hamburg, Germany) equipped with a Spot camera and Spot software ver. 2.2 (Diagnostic Instruments, Sterling Heights, MI, USA). An analysis of variance was used to determine the significant differences in fluorescence between the groups.

Effects of ginsenoside Rg3, on 24-hydroxycholesterol (24-OH-chol)-induced mitochondrial activity. Cortical cells were pretreated with various concentrations of Rg3 for 24 hours and then exposed to 24-OH-chol (50 μM) for 60 minutes, and mitochondrial activities were determined by the MTT assay. Values are expressed as percentages of the untreated control. Results are expressed as the means±SEMs from seven separate triplicate experiments. *p < 0.05, **p < 0.01, compared with 24-OH-chol treatment alone.
to estimate the degree of free radical production in the neuron culture. Low levels of MDA were found in the control (0.15 ± 0.07 nmol/mg protein), and these values were considered physiological. In contrast, a significant increase in MDA concentration (2.58 ± 0.28 nmol/mg protein) occurred in the 24 hour 50 μm 24-OH-chol treatment. The MDA concentrations were 2.62 ± 0.32, 2.35 ± 0.28, 2.31 ± 0.35, and 1.79 ± 0.48 nmol/mg protein at Rg₃ doses of 1, 3, 10, and 30 μm (Fig. 4). These Rg₃ concentrations did not have a significant impact on the 24-OH-chol-induced MDA level. Rg₃ exerted a more profound concentration-dependent inhibition of MDA production at Rg₃ doses of 100 and 300 μm (1.01 ± 0.22, and 1.12 ± 0.23 nmol/mg protein, respectively; **p < 0.01) (Fig. 4). Thus, Rg₃ concentrations < 30 μm did not inhibit the change in MDA production. These results indicate that 50 μm 24-OH-chol elevated MDA production and that pretreatment with 100 to 300 μm Rg₃ significantly decreased MDA production (Fig. 4).

Effects of ginsenoside Rg₃ on TUNEL staining

As it is well known that cholesterol oxides exert DNA damage on neuronal cells [15], we next examined the protective effects of Rg₃ against in vitro 24-OH-chol-induced DNA fragmentation in cortical neurons. Control experiments revealed that saline or 100 μm Rg₃ alone had no significant effect on cortical neurons. This result suggests that Rg₃ itself does not influence neuronal cell viability. Next, we administered 50 μm 24-OH-chol into cell culture plates (n = 8) and examined cytotoxicity after 24 hour. The maximum effect on neuronal cell viability after the 24-OH-chol treatment was obtained with 100 μm Rg₃ (Fig. 2). Thus, 100 μm was determined to be the appropriate Rg₃ dose to optimize the neuroprotective effect on 24-OH-chol-induced neuronal cytotoxicity. To quantitatively examine the level of neuronal cell death, we counted the number of TUNEL-positive cells. Treating cells with control vehicle or Rg₃ alone yielded only a few TUNEL-positive neurons (Fig. 5). However, a

![Fig. 3. Effects of ginsenoside Rg₃ (Rg₃) on 50 μm 24-hydroxycholesterol (24-OH-chol)-induced [Ca²⁺] increase in cultured rat cortical neurons. Inhibitory effect of Rg₃ on 24-OH-chol-induced (Ca²⁺) increase using Ca²⁺ imaging techniques. Responses evoked by 24-OH-chol were quantified based on the Rg₃ dose (1–300 mM) to detect the maximal anti-calcium effect. Data are expressed as percentage inhibition compared with a 100% control response. Each bar represents the mean±SEM from seven or eight cells. *p < 0.05, **p < 0.01, compared with 24-OH-chol treatment alone.](image1)

![Fig. 4. Effects of ginsenoside Rg₃ (Rg₃) on malondialdehyde (MDA) levels in rat cortical cells. MDA levels were determined in cortical cells after a 24 hour incubation with 50 μm 24-hydroxycholesterol with or without Rg₃. Results are presented as nmol MDA/mg protein. Data are the mean±SEM (**p < 0.01, n = 7–8).](image2)

![Fig. 5. Effects of ginsenoside Rg₃ (Rg₃) on 24-hydroxycholesterol (24-OH-chol)-induced DNA strand breakage as assessed by Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. Cells were divided into control vehicle (Con), Rg₃ alone, 24-OH-chol (C.O) alone, and Rg₃+C.O groups. In the Rg₃+C.O co-treatment group, the cells were pretreated with 100 μm Rg₃ 1 hour before adding 50 μm C.O. The density of TUNEL-positive neurons was quantified, and the results are expressed as the mean±SEM from seven separate triplicate experiments (*p < 0.01, compared with cells treated with C.O alone).](image3)
24 hour treatment with 24-OH-chol induced dramatic increases in TUNEL positivity compared with control or Rg3 alone, whereas Rg3 pretreatment markedly reduced 24-OH-chol-induced TUNEL positivity (**p < 0.01, compared with cells treated with 24-OH-chol + Rg3) (Fig. 5). These results indicate that Rg3 pretreatment attenuated 24-OH-chol-induced mitochondrial dysfunction and DNA damage.

Effects of ginsenoside Rg3 on apoptosis

Because 50 μm 24-OH-chol increases apoptosis in neurons [15], we next examined whether Rg3 would affect 50 μm 24-OH-chol-induced apoptosis. Treatment with 50 μm 24-OH-chol alone for 24 hours significantly increased caspase-3 activity levels compared with controls (Fig. 6). Although the effect of Rg3 on 24-OH-chol-induced caspase-3 activity was not significant in the range of 1 to 30 μm, a 1 hour pretreatment with 100 and 300 μm Rg3 significantly and dose-dependently decreased caspase-3 protease activity (Fig. 6). Treatment with Rg3 alone had no significant effect on basal caspase-3 activity (data not shown). The percentages of caspase-3 activity (with levels in controls taken as 100%) were 163.78±7.89%, 161.85±8.68%, 160.58±9.65%, 151.75±7.87%, 143.78±10.77%, 119.18±8.93%, and 110.80±9.65% in cultures pretreated with 0, 1, 3, 10, 30, 100, and 300 μm Rg3, respectively (**p < 0.01) (Fig. 6). These results indicate that Rg3 inhibits 24-OH-chol-induced apoptosis in rat cortical neurons.

Ginsenosides are unique saponins that only exist in Panax ginseng and that have pharmacological effects in the central and peripheral nervous systems [33]. In a previous study, ginsenosides exerted in vitro and in vivo protective actions against acute excessive stimulation of excitatory neurotransmitters [18,34,35]. Furthermore, ginsenoside-induced regulation of ion channels and ligand-gated ion channels may be coupled with neuroprotection against excitatory neurotransmitters in vitro and in vivo [18-20,23,35]. The present study further extended the finding that Rg3, one of the active ingredients in Panax ginseng, can protect the central nervous system from repeated neurotoxic insults. Thus, we demonstrated that in vitro administration of Rg3 exhibited protective effects against 24-OH-chol-induced cytotoxicity in rat cortical neurons. One of the main indicators of neural excitotoxicity or excitotoxin-induced cell death is derived from a disturbance in intracellular Ca2+ homeostasis. Previous reports have shown that 24-OH-chol-induced neurotoxicity is coupled with increased intracellular Ca2+ [16]. In the present study, we showed that 24-OH-chol alone induced a rapid elevation in intracellular Ca2+ in cortical neurons, as shown in previous reports [16], and pretreatment with Rg3 prior to 24-OH-chol treatment greatly attenuated the 24-OH-chol-induced intracellular Ca2+ elevation (Fig. 3). We also showed that pretreating cultured cortical neurons with Rg3 rescued 24-OH-chol-induced decreases in mitochondrial ability, diminished caspase-3 activity, and subsequent apoptosis (Fig. 6) as well as abrogated increases in TUNEL positivity (Fig. 5). The inhibition of lipid peroxidation by Rg3 and ginseng saponins accounts for the marked anti-oxidative stress effect [26]. We showed that Rg3 reduced reactive oxygen species production indirectly (Fig. 4). Collectively, these findings provide a strong case for Rg3-induced neuroprotection against 24-OH-chol-induced cytotoxicity. One possible mechanism underlying the protective effect of Rg3 against 24-OH-chol-induced rat neurotoxicity might be derived from the inhibition on 24-OH-chol-induced Ca2+ influx via L- and other types of Ca2+ channels [36]. Moreover, ginsenosides inhibit L-, N-, and P/Q-types of Ca2+ channels [37-40]. A second possibility might be derived from ginsenoside-induced attenuation of extracellular Ca2+ entry caused by NMDA receptor activation. Previous studies have shown that ginsenosides not only inhibit NMDA receptor-mediated current and Ca2+ influx but also attenuate kainate-induced hippocampal neuron death [23,24]. Thus, these Rg3-induced limiting actions on extracellular Ca2+ influx via Ca2+ channels and subsequent Ca2+ influx via secondary NMDA receptor activation might prevent aggravation of 24-OH-chol-induced intracellular Ca2+ elevation. Moreover, these Rg3 contributions might help to diminish the ATP consumption needed for maintaining intracellular ionic

![Fig. 6](http://ginsengres.org)

Fig. 6. Effect of ginsenoside Rg3 (Rg3) on caspase-3 activation in 24-hydroxycholesterol (24-OH-chol)-induced cortical cell death. Cultured rat cortical cells were pretreated with the indicated concentrations of Rg3 1 hour prior to adding 50 μm 24-OH-chol, and caspase-3 activity was measured. Values are means±SEM from 7 to 8 separate experiments run in triplicate (**p < 0.01, compared with values from 24-OH-chol alone).
balance in neurons under 24-OH-chol-induced toxicity. The last possibility is that Rg3-induced neuroprotection might be derived from an attenuation of oxidative stress, as ginsenosides inhibit glutamate-mediated overproduction of nitric oxide and malondialdehyde and prevent a decrease in superoxide dismutase activity in glutamate-treated cortical neurons [18,34].

Taken together with previous reports, the present findings suggest that Rg3-induced neuroprotection against 24-OH-chol could be due at least in part to inhibition of NMDA receptor activation and the subsequent enhancement of intracellular Ca^{2+}. In summary, for various neural injuries associated with increased cholesterol oxidation products [41], our findings further suggest that Rg3 could be useful as a novel preventive agent against 24-OH-chol-induced neurocytotoxicity.

ACKNOWLEDGEMENTS

This work was supported by the Korea Research Foundation Grant funded by the Korean government (MOEHRD, basic research promotion fund) (KRF-2007-331-E00249).

REFERENCES

21. Abe K, Cho SI, Kitagawa I, Nishiyama N, Saito H. Differential effects of ginsenoside Rb1 and malonylginsen-
37. Nah SY, McCleskey EW. Ginseng root extract inhibits calcium channels in rat sensory neurons through a similar path, but different receptor, as mu-type opioids. J Ethnopharmacol 1994;42:45-51.