프로펠러에 의한 LNG 운반선 이중모형 선미의 속도변화 계측

 Kimber jun* , Hyoung Tae Kim† and Suak–Ho Van**

Dept. of Naval Architecture & Ocean Eng., Chungnam National Univ.*
Marine Transportation System Lab., KRISO/KORDI**

Abstract

The experiment was performed at the large wind tunnel of the Chungnam National University to measure the velocity distribution around the stern of a Liquefied Natural Gas Carrier model. The data, mean velocity vectors of turbulent shear flows at the stern and near–wake including the propeller plane, were obtained by a five–hole Pitot tube for the double body model fixed inside the wind tunnel test section. The present result of the double body model shows a close agreement with the result of the towing tank experiment performed by the KRISO for the same ship model. The characteristics of the LNG stern flow are discussed based on the measured velocity distribution. The data can be very useful for the validation of some numerical methods in computational fluid dynamics.

Keywords: Wind tunnel, Double body, Five–hole Pitot

1. 서 언

조선 분야에서는 선미 유동을 이해하기 위한 노력의 일환으로 모형선 선미 유속계측이 꾸준히 수행되어 왔다. 그러나 조선소에서 실제로 건조되고 있는 선형과는 다른 단순한 표준 선형 및 프로펠러가 작동하고 있지 않은 상태에서 계측된 자료가 대부분이었다. 이에 따라서 실제적인 선형에 대한 실험 결과의 필요성이 자연스럽게 대두되었고, 최근 선체 주위 정성유동에 대한 수치해석이 활발히 이루어지면서 수치해석 결과를 검증할 잠재적인 실형에 대한 계측실험 결과가 요구되고 있다. 이러한 요구에 상응하여 국내 조선소에서 건조되고 있는 다양한 상태에 대한 선미유동 계측점이 꾸준히 수행되고 있다. 반석호 등(2000)은 예인수조에서 3600TEU 컨테이너선에 대하여 파

선미부모에서의 모형선에 대한 계측은 자유유연 효과를 포함시킬 수 있어 실제 유동에 보다 갈 깨든 정점이 있지만, 국부유동에 대한 계측을 수행하기 위해서 많은 시간과 비용이 소요되고 난류의 계측이 어려기 때문에 풍동에서 이중모형을 사용하여 선미의 난류진단유동에 대한 보다 상세한 계측을 수행할 필요가 있다.

한편, 프로펠러가 작동하는 상선의 선미 유동 계측은 선미부모에서 5공 프트로를 사용해서 LNG 선미 유동을 계측한 것(반석호 등, 2003)이 처음이 라고 볼 수 있다. 이후, 회류부모에서 IVF를 이용하여 프로펠러가 작동하는 모형선에 대한 유동 계측(박부근 등, 2004)이 시도된 바 있으나, 모형선과 모형 프로펠러의 크기가 작고, 실험 레이놀즈 수 역시 지나치게 작은 문제점이 있다. 프로펠러가 작동하는 실험적인 상선의 선미 유동에 대한 계측 자료는 아직도 많이 부족한 실정이며, 자항 시 선미 유동에 대한 이해, 추진 성능 및 추진 요소의 해석 및 추정을 위한 수치 해석법의 개발 및 검증을 위한 자료로서 프로펠러가 작동하는 모형선의 선미 전단 유동에 대한 계측 실험이 필요한 상황이다.

본 연구는 충남대학교 풍동에서 LNG 선형의 선미 유동에 대하여 수행되고 있는 난류를 포함한 일련의 유동계측 실험으로서 먼저 반석호 등(2003)이 선미부모에서 실험한 것과 동일한 LNG 선형의 이중모형을 풍동에 설치하고, 5공 피트로를 사용하여 나선 상태에서 선미와 선미 후류의 평균유속 분포를 계측하고, 이어서 프로펠러가 회전하는 상태에서 선미 후류의 유속을 계측한 다

2. 실험장치 및 실험방법

2.1 시스템 구성

본 연구 실험장치의 구성은 Fig. 1에서 보인 것과 같다.

이중모형선을 두개의 스트랫을 이용하여 풍동 시험부 중앙에 설치하였고, 5공 피트로가 부착되어 있는 2축 이중장치는 컴퓨터에 의하여 계측하고자 하는 위치로 이동하도록 설계하였다. 피트로의 각 축의 압력차는 슬레노이드 밴부터에 의해 분기되어 마이크로 마니포터에 연결하였고 마이크로 마니포터의 전기적 신호는 컴퓨터에 저장된 A/D 변환기를 통해 수치화하였다. 또한 이중모형선 내부에 프로펠러 구동 동력계를 내장하여 고정시킨 후 프로펠러를 정착하였다. 프로펠러 회전수를 측정하기 위해 동력계의 내부에 센서를 부착하였고 프로펠러의 구동 동력계를 제어하는 시스템은 Fig. 1과 같이 풍동 외부에 설치하였다.

2.2 모형선

실험에 사용된 모형선은 KRISO에서 설계된 138K LNG(KRISO K LNG) 선형으로 목재를 사용하여 1/85의 축척비로 제작되었으며, 설선과 모형선의 대한 주요 제원은 Table 1에 나타내었다.

Fig. 1 Schematic diagram of experimental apparatus for flow measurement
풍동시험에서 자유표면 효과를 대치면으로 극소하기 위해 설계흡수 면을 기준으로 대칭인 이중모형을 제작하였다. 선행의 body plan과 선수와 선미의 윤곽선은 Fig. 2에 보였고 모형을 지지하는 스크랫의 길이×폭×높이는 30×80×800mm이고, 5st과 15st 두 곳에 설치하여 모형선을 균형 있게 고정시켰다. 실험에서 계측결과에 미칠 스트בט의 영향에 의한 계측값의 차이를 가능한 한 줄이기 위해서 이중모형 윗부분을 계측 영역으로 선택하였다.

2.3 풍동
충남대학교 풍동은 중형 약속폐회로식 (closed–circuit type)으로서 두 개의 시험부를 교체하여 실험이 할 수 있다. 제 1시험부 크기는 1.25×1.25×4m이고 최대속도는 70m/s이며 제 2시험부의 크기는 1.8×1.8×5.2m, 최대속도는 35m/s이다. 실험은 이중모형에 의한 차폐효과 (blockage effect)를 최소화하기 위해서 시험부 단면적이 큰 제 2시험부에서 수행하였다. Fig. 3에 충남대학교 풍동의 개략도를 보이고 있다.

2.4 추진기와 동력장치
실험에 사용된 모형 프로펠러의 자세한 재원은 Table 2에 나타내었다. KRISO 예인수조 시험에 사용된 것(KP632)과 상사한 모형로서 본 연구에서는 이에 수행한 KRISO의 프로펠러 단독시험 결과를 참고하였다.

본 실험을 위해 설계, 제작된 프로펠러 구동 동력계의 도면은 Fig. 4에 나타내었다.

2.5 피토브랩 및 계측장비
선체 후류의 3차원 평균유속을 계측하기 위해 5종 피토브랩을 사용하였다. 5종 피토브랩 각 축의 압력은 비날트브를 통하여 솔레노이드 밸브에 연결되어 마이크로 마니터에 입력되는 순서에 따라

<table>
<thead>
<tr>
<th>Table 1 Principal particulars of KLNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship</td>
</tr>
<tr>
<td>Speed</td>
</tr>
<tr>
<td>Lpp(m)</td>
</tr>
<tr>
<td>B(m)</td>
</tr>
<tr>
<td>T(m)</td>
</tr>
<tr>
<td>Reynolds Number</td>
</tr>
<tr>
<td>CB</td>
</tr>
</tbody>
</table>

Fig. 2 Body plan of KLNG

<table>
<thead>
<tr>
<th>Table 2 Particulars of propeller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Propeller (KP632)</td>
</tr>
<tr>
<td>Diameter(m)</td>
</tr>
<tr>
<td>Number of blades</td>
</tr>
<tr>
<td>(P/D)Mean</td>
</tr>
<tr>
<td>Ae/A0</td>
</tr>
<tr>
<td>Hub-diameter ratio</td>
</tr>
<tr>
<td>Skew angle (deg)</td>
</tr>
<tr>
<td>Propeller section type</td>
</tr>
<tr>
<td>a=0.9 meanline</td>
</tr>
</tbody>
</table>

Fig. 4 Propeller dynamometer
측정된다. 본 실험에서는 Fig. 5에 보인 바와 같이 큰 임의각에서도 줄은 민감도를 나타내는 사각형 끝단의 피토관을 사용하였다(김우진 등 1997). 마이크로 매큐터는 피토관에서의 압력차를 디지털방식으로 나타내는 장치로서 Furness 사의 FC016을 사용하였다.

2.6 트레버스
모형선 후면에 설치한 2축 트레버스를 사용하여 피토관을 계측 위치로 이동하였다. 트레버스의 이동 범위는 상하로 800mm, 좌우로 700mm이고 0.1mm 오차 내에서 이동할 수 있다. 측정 위치로 이동은 컴퓨터에 의해 조종된 스테핑 모터 컨트롤러(Velmex VP9000)를 이용한다.

2.7 5점 피토관의 교정
피토관 교정법으로는 최근 김우진 등(1997)이 제안한 2차원 차트 교정 방법과 Wright(1970)가 제안한 소위 K_h-K_v 범위와 K_h-K_v 범위 등으로 프로필러 면에 적용하고 그 결과를 비교해 해석이 간편하고 우수한 결과를 나타낸 K_h-K_v 범위를 선택하였다. 교정은 yaw angle과 pitch angle을 각각 -40°~$+40^\circ$ 범위에서 10' 간격으로 변화 시켜 수행하였고, 각각 11개 영역의 오차를 줄이기 위해 $\pm 0.5^\circ$를 추가하였다. 총 계측 위치는 121개 (11x11)이고, 각 위치에서 50Hz의 Sampling rate로 4초간 계측하여 200개의 데이터를 취득하여 처리하였다. K_h-K_v 범위에 사용된 피토관 교정 좌표계는 Fig. 6에 도시하였고, K_h-K_v 범위를 정리하면 다음과 같다.

Yaw와 pitch 방향으로 미리 정해진 각도를 준 다음, 피토관 중심 주 ①과 주위 주 ②~⑤의 압력 측정값으로부터 X축과 Y축을 이루는 경사각 ϕ 값에 대한 K_h 와 K_v 계수를 식(1)로 구한다.

$$K_h = \frac{[1-\sum_{n=2}^{5}(p_1-p_n)^2\sum_{n=2}^{5}(p_1-p_n)^2]^{1/2}}{\rho}$$

$$K_v = \frac{\rho}{\sum_{n=2}^{5}(p_1-p_n)^2}$$

이 식에서 ρ 는 유체의 밀도를 의미한다.
각 측의 압력 측정값으로부터 교정 데이터를 이용하여 계속 성질을 구하는 방법은 다음과 같다.
1) 계측된 압력으로부터 식(1)의 K_h 계수를 구한다.
2) 교정 데이터의 $\phi-K_h$ 관계로부터 ϕ 값을 보간한다.
3) 교정 데이터의 $\phi-K_v$ 관계로부터 K_v 값을 보간한다.
4) 식(2)를 사용해서 직속도의 크기를 계산한다.

$$V = \frac{K_x}{\rho} \left[\sum_{n=2}^{5}(p_1-p_n)^2 \right]^{1/4}$$

5) Y-Z 평면상에서 X-Z 평면과의 경사각 δ 는 식(3)과 같이 계산한다.

$$\tan \delta = \frac{\rho_5 - \rho_3}{\rho_2 - \rho_3}$$

$$p_4 > p_5 > p_2 > p_3 \\quad \pi/2 > \delta > \pi$$

$$p_4 > p_5 > p_2 > p_3 \quad \pi/2 > \delta > \pi$$

$$p_4 > p_5 > p_2 > p_3 \quad 3\pi/2 > \delta > 2\pi$$

6) 각방향의 속도 성분 (V_x, V_y, V_z) 을 전속도 V 와 ϕ 및 δ 값을 사용해서 식(4)와 같이
2.8 실험 방법
선미 후류의 평균 유속 분포를 계측하기 위해서 5공 피호관을 사용하였다. 이는 확립 및 모형
선의 레이놀즈수는 3.13×10^6이다. 프로펠러가 회
전하는 상태에 대한 유속 계측은 시험부 속도
12.9m/s 조건으로 프로펠러 후방 단면 위치에서
수행하였으며, 프로펠러축을 중심으로 좌우 및 상
하 방향으로 각각 12cm 인 정사각형 영역에 대해
서 1cm 간격으로 이동하면서 총 169개의 지점을
서 유속을 계측하였다.
유동 계측 결과를 표시하기 위하여 계측 위치는
모형선의 길이로, 계측 속도는 평동 시험부 유속
으로 각각 무차원화 하였다. 3차원 직교 좌표계에
서 X는 선체 후방을, Y는 선체의 우회 방향을, Z
는 연직 상방을 가리키며, 좌표계의 원점은 선체
중심선과 중앙 단면이 만나는 곳에 위치한다. 실
험 계측 위치는 Fig. 8에 나타내었다.

3. 실험 결과
3.1 나선상태의 선미유속분포
유속 계측은 1.5, 1.0, 0.421, 0.210, -0.3383
의 5개 st.에서 수행하였고 Fig. 9에 계측된 평균
유속 분포를 나타내었다. 프로펠러 평면이 위치한
0.421 st.에 대해서는 빌축호 등(2003)의 계측결
과, Fig. 9 (d)를 함께 보고해서 상호 비교가
이야하게 하였으며 평동에서의 유속 계측결과는
에인수조에서 계측한 결과와 대체로 일치하는 것
으로 나타났다. Fig. 9 (c) 와 (d)를 제외한 보전
평동에서 계측한 축 방향 속도 성분의 등고선이
전반적으로 좀 더 매끄럽고 선속의 0.9까지는
에인수조의 경우에 비해 더 넓은 영역으로 나타난
것을 볼 수 있다. 이것은 본 연구의 계측결과가
정확한 것을 의미하고, 후자는 평동 실험의 레
이놀즈수가 작기 때문에 인 것으로 판단된다.
반대로, 선속의 0.9 이상의 등고선이 더 좁은 영역으로
계측된 원인은 확인할 수 없고, 시험부 차폐효과
(blockage effect)와 시험부 유동의 난류 강도에
의한 영향일 것으로 생각된다.

단면 유속 벡터는 프로펠러 중심 부근의 일부
계측 위치를 제외하고는 거의 일치하는 것을 볼
수 있다. 유속 벡터의 크기가 흔하게 두드러진 차
이를 나타내는 일부 계측 값은 국부 유동구역이 케
서 피호관의 교정 범위를 벗어난 것으로 확인되었
지만 이를 수정 없이 표시한 것이다. 프로펠러 원
판 내부의 빌지 보우택스 형상 및 그 중심의 위치
는 서로 잘 일치한다. 프로펠러의 최측 일정면
(0.21st.)에서 계측된 유속에 대한 비교 결과도 같
은 경향을 나타내고 있다. -0.3383 st.의 유속 분
포는 빌지 보우택스의 roll-up이 진행되고 프로펠
러 원주 바깥쪽 4사분 위치의 축 방향 속도가 중
가하여 좀 더 분명한 분포가 된 것을 잘 보여준다.
한편, 빌지 보우택스의 중심 위치는 아래쪽(-Z방
항과 안쪽(+)방향)으로 이동한 것으로 나타났다. 이는 주로 점성 및 난류 확산의 효과로 이해할 수 있으나 시험부 처리 효과의 영향도 완전히 배제할 수는 없다.

3. 2 프로필러 작동시 선유속분포
프로필러가 선이에서 작동하고 있는 경우에 대한 유속 계측을 프로필러면 후방의 세 위치 0.21, -0.3383, -0.52 st.에서 수행하였다. 먼저, 반석호 등(2003)에 의해 수행된 에인수조 자장시험에서 얻어진 유속 전진비로부터 추정한 프로필러 회전수(9800rpm)와 그 보다 높고 낮은 두 회전수 (9400, 8400rpm)에 대하여 0.21 st.에서 유속을 계측하였으며, Fig. 10 (a), (b), (c)는 각기 다른 3가지 회전수에 대한 평균 유속계측 결과를, Fig. 10 (d)는 반석호 등(2003)의 에인수조 유속계측 결과를 보여준다.

예상한 바와 같이 프로필러 회전수가 증가함에 따라 프로필러 후방 원반 안쪽 유속이 증가하는 것을 볼 수 있으며, 8900 rpm일 때의 유속분포 (Fig. 10 (b))가 에인수조 결과와 가장 유사한 것을 확인할 수 있다. Fig. 10 (b)와 (d)를 비교해보면 두 경우 모두 프로필러 원반의 후방 빠른 쪽의 방향 0.7R 부근을 따라서 후방 속도가 최대한 영역이 초 승달 모양으로 나타나는 등, 두 경우의 유속 분포가 매우 유사한 것으로 볼 수 있으나, 본 연구에서 계측한 유속이 에인수조에서 계측한 유속보다 대체로 조금 작게 나타났다.

프로필러 회전수를 8900 rpm보다 조금씩 증가 시키면서 계측한 유속분포는 양근한 유속 분포를 두는 회전수를 찾을 수 있겠지만, 회전수의 미세조정이 본 연구 결과에 그 다지 영향을 미치지 않는다고 판단하여 프로필러 회전수 8900rpm에 대해 나머지 두 환경면 (-0.3383, -0.52 st.)에서 유속 계측을 수행하였다.

Fig. 10 (a)~(c)에서 프로필러 원반 유속 쪽 육 방향 속도가 좌현에 비해 크게 나타나는 것은 프로필러 면의 환 방향 유속 벡터의 방향과 프로필러 회전 방향이 우연 쪽에서는 반대로, 좌현 쪽에서는 역하게 되며, 프로필러 날개에 유입하는 상대 유속의 유입각과 크기가 우현 쪽에서 더 컸으므로, 따라서 회전하는 프로필러 날개가 우현 쪽에서 더 큰 힘을 발생시킨다. 또 본격 0.7R 부근의 환 방향 유속 벡터의 크기가 우연 쪽에서는 작고, 좌현 쪽에서 상대적으로 크게 나타난 것도 환 방향 유속 벡터의 방향과 프로필러 회전 방향의 상대적인 차이 때문인 것일을 알 수 있다. 프로필러의 작동에 의해서 발생된 선이 후류 유속의 변화를 살펴보기 위하여 프로필러면 후방의 두 위치 (0.21, -0.3383 st.)에서 계측된 유속과 동일한 위치에서 나선 상태에서 계측된 유속 그리고 두 유속의 차 벡터를 Fig. 11과 12에 보였다. 나선 상태의 속도는 좌현과 중앙 대칭면을 지나서 우현 일부에 대해서만 계측하였기 때문에 여기서는 좌현에서 계측한 유속 벡터를 대칭시켜 나타내었다. Fig. 11에 나타난 유속 분포를 살펴보면 프로필러 에 의해 후류(0.21 st.)에서 촉 방향 유속이 증가하고 프로필러 회전 방향성 선수류가 발생한 것을 볼 수 있다. 특히 프로필러 후류 유관의 안쪽으로 볼 수 있는 프로필러 원반 내에서의 유속 분포의 차이는 프로필러에 의한 유속 변화를 잘 보여주고 있다. Fig. 11 (c)에서 표시된 프로필러 작동에 의한 촉 방향 속도의 증가는 유속 증가량이 가장 큰 우현 쪽의 프로필러 방향 60% 부근을 제외하면 회전 방향으로 상당히 고르게 나타난다. 프로필러에 의하여 유류된 선수류의 회전방향 속도 분포도 촉방향 유속 주변그는 좀 차이가 있지만 Fig. 11 (a)에 나타난 전속도 분포와는 달리 비교적 고른 분포를 보여준다. 이는 프로필러 원반의 좌, 우 현에서 유속 분포의 차이로 인한 프로필러 후류의 차이가 발생하였음에도 불구하고 프로필러가 회전하면서 유기한 속도는 일부역할을 제외하면 균일하다는 것을 보여준다. Fig. 12는 좌측 후류 (-0.3383 st.)에서의 유속 변화를 같은 방법으로 나타낸 것이다. Fig. 11의 경우와 대체로 유속의 특성을 보여주나 대체로 유속 분포가 상대적으로 완만하게 나타났다. Fig. 12(a)에는 프로필러 후류가 좌현 쪽으로 움직이 치우쳐 나타났는데 이는 시험부 또는 그 후방의 터널 유동이 모형실험과정과 하지 못한 부분이라 정확성은 알 수 없다. Fig. 12(c)는 후류로 가면서 프로필러에 의한 촉 방향 속도 증가가 줄어들고 그 분포가

Journal of SNAK, Vol. 42, No. 5, October 2005
Fig. 9 Contours of axial velocity and transverse vectors
Fig. 10 Velocity distribution for different propeller rotations (0.21 station)

원만해진 것과 달리 선회류의 회전방향 속도는 그 다지 크게 줄지 않고 일부 영역에서는 오히려 증가한 것을 보여준다. 이는 프로펠러에 의해서 유기된 선회류가 이 위치에서도 계속 발달하고 있다는 것을 의미한다.

4. 결언

액화천영기스 운반선 이중모형을 대상으로 나선선 유속분포 및 프로펠러가 작동하는 상태에서 프로펠러 후류 평균 유속을 계측하기 위하여 충남
Fig. 11(a) propeller rotating condition (0.21 station)

Fig. 11(b) bare hull condition (0.21 station)

Fig. 11(c) Difference of velocity between (a) and (b)

Fig. 12(a) propeller rotating condition (~0.3383 station)

Fig. 12(b) bare hull condition (~0.3383 station)

Fig. 12(c) Difference of velocity between (a) and (b)

Fig. 11,12 Change of velocity due to the propeller action (0.21 and ~0.3383 stations)
대학과 중형 어용속 공통에서 실험을 수행하였다. 5공 피토관을 사용하여 이중모형 선미와 후류의 평균 유속을 계측함으로써 프로필러 영향을 포함한 선미 후방 전단 유동에 대한 유속 자료를 얻었다. 또한 후류의 유속 분포를 나선 상태에 대한 계측 결과와 비교함으로써 프로필러에 의한 선미 유속의 변화를 조사하였다. 동일한 위치에서 계측한 두 유속 벡터의 차로부터 좌, 우현에서의 프로필러 하중의 차이와 이로 인한 충방향 속도 증가량의 차이 그리고 이와 달리 비교적 균일한 선수류가 프로필러에 의해서 유동을 불 ngộ하였다.

한편, 본 연구에서 계측된 KLNG 이중모형 선미 및 후류의 유속 분포는 동일한 선형에 대한 KRISO 메인수조 계측 결과와 대체로 잘 일치하였으며, 이러한 사실로부터 자유 수면을 대청면으로 근사한 이중모형의 풍동실험을 통하여 선미와 후류의 전단유동에 대한 신뢰할 수 있는 정보를 얻을 수 있음을 확인하였다.

후 기

본 논문은 한국해양연구원과 첨단조선공학연구센터(ASERC)의 지원을 받아 수행된 연구 결과입니다. 위 기관의 후원에 감사드립니다.

참 고 문 헌