Establishment of Standard Model for Production Facility Informatization
System for Molding Business and its Effect Analysis

KyoungBae Yoon *

요 약

본 연구는 중소기업의 정보화를 추진함에 있어, 정보화 중에서도 중단기적인 도입 성과를 낼 수 있는 생산설비정보화 구축을 위하여, 성형제조업 본야의 생산설비 구축에 대한 표준 모델을 연구 개발한다. 성형제조업 생산설비정보화 표준화를 위한 개발방법론은 기존 개발된 생산설비정보화 개발 방법론(PSDM)을 적용하여, 표준화 모델은 생산관리 프로세스 중 메인 프로세스인 원자재수급 관리와 생산량 집계 2개의 프로세스를 표준화시켜 표준 모듈을 개발한다. 본 연구로 생산설비정보화를 구축하고자 하는 성형제조업 중소기업 및 관련 전문 IT업체들이 표준화된 모듈을 적응하여 시스템을 보다 효과적으로 구축 할 수 있으며, 시스템에 대한 구축 용이성과 신뢰성을 제공한다. 본 연구 결과를 적용함으로써 생산공정의 불합리한 요소제거, 생산품질 향상, 생산비용절감이 가능하다.

Abstract

The purpose of this research is to develop a standard model for the compilation of production results in molding business to establish the informatization system for the production facility among informatization projects which can generate the performance of medium and short term introduction of the project in implementing the system to small and medium industry. The theory on the development method for the standardization of informatization for production facility in molding business applies PSDM (Production System Development Method) for which a number of researches were already done while developing a standardization model by standardizing two processes of raw material demand/supply management and making sum total for production quantity which are main processes for production management process. On the basis of the result of this research, small and medium companies in molding business and relevant specialized IT companies which desire to establish production facility informatization systems will be able to establish more efficient system by applying standardized model, and the result of research will enable to facilitate the establishment of the system for them while providing reliability of the system. Through the application of the result of this research, it will be possible to accomplish the elimination of unreasonable factors in production process, the enhancement of product quality and the saving of production cost.

* 제1저자: 문경배
* 김포대학 경영정보과 교수
* 본 논문은 2009년도 김포대학의 연구비 지원에 의거하여 연구되었습니다.
1. 서 론

현재 많은 중소기업들이 IT업체와 함께 생산정보화를 위하여 많은 노력을 기울이고 있으며, 이러한 기반으로 21세기 글로벌 시대에 기업 경쟁력을 강화하여 세계 일류 중소기업으로의 성장을 목표하고 있다[1,2]. 그러나 우리나라 주요 기업에 비하여 중소기업은 발전할 성장을 보이고 있지 못한다. 대기업의 급속한 성장을 이에 대하여 경쟁력을 강화하여 세계 일류 중소기업으로의 성장을 목표하고 있다[3,4].

한국개발연구원에서 제공한 제조업 노동생산성 관련지표로서는 1971년과 같이 2000년 이후로도 대기업에 비해 중소기업의 노동생산성 증폭은 현저하게 떨어져 있고 이는 달을 수 있다. 노동생산성수준은 산출량수준 / 노동투입량수준으로 표시되며, 산출량수준은 제조업 산업생산치 비율로 표시되고, 노동투입량수준은 근로자수 x 근로시간(노동부자료)을 나타낸다[5].

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>대기업</td>
<td>노동생산성</td>
<td>3.1</td>
<td>3.8</td>
<td>3.6</td>
<td>3.5</td>
<td>3.4</td>
<td>3.3</td>
<td>3.2</td>
<td>3.1</td>
<td>3.0</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>산출량</td>
<td>3.1</td>
<td>3.8</td>
<td>3.6</td>
<td>3.5</td>
<td>3.4</td>
<td>3.3</td>
<td>3.2</td>
<td>3.1</td>
<td>3.0</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>노동</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>중소기업</td>
<td>노동생산성</td>
<td>2.8</td>
<td>3.3</td>
<td>3.2</td>
<td>3.1</td>
<td>3.0</td>
<td>2.9</td>
<td>2.8</td>
<td>2.7</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>산출량</td>
<td>2.8</td>
<td>3.3</td>
<td>3.2</td>
<td>3.1</td>
<td>3.0</td>
<td>2.9</td>
<td>2.8</td>
<td>2.7</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>노동</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

우리나라는 1990년대 중반을 기점으로 국가 정보통신 인프라 구축사업을 본격적으로 추진하여 세계 최고 수준의 IT 인프라를 보유하고 있으며, 지정학적으로 치열한 경쟁에서 시장의 역량 확보와 무한경쟁 시대에 저출산저세계 경영 우위를 지키기 위해 경영화를 해하여 그동안 IT 제품의 글로벌 테스트 배드의 성과를 나타냈다[6,7].

그러나 이러한 성공 이면에는 어려운 한 단계가 나타나기 시작하였다. 2004년 중소기업은 중소기업으로부터 논평한 결과에 따르면 기업의 IT업무 활용도가 54.6%로 늘어났으며 기업의 IT업무 활용도는 53.4%이다. 기업간 네트워크 활용(47.1%)으로 이에 이르기까지 기업들이 제조업으로서 IT를 활용한 생산성 혁신과 경쟁력 제고가 미흡한 실정이 되어, 인사 등 기업 내부 전산화 수준이 면밀히 있는 것이 현실이다. 생산 제조업과 같은 업무를 IT화하여 경쟁력을 강화하려는 노력은 아직도 많이 필요하다. 노동생산성성별, 우수한 인재부족, 그리고 신제품 개발을 위한 R&D에 대한 투자여력 감소가 지속적인 사업발전을 위한 사업구조의 고도화에 적절하다고 본다. 특히 제조중소기업의 생산성과의 인프라 구축은 기업과의 비교하여 계속 하락하였으며, 이에 대한 주요 원인은 기업의 자동화에 투자로 인해 노동생산성이 빠르게 증가하였기 때문으로 보고하였다.

한편 FTA 체결은 글로벌 시대를 맞아 시각적 변화하는 환경의 빠른 적응을 요구하는 기업의 생산성 향상 시기는 빠른 적응력이 필요하며 여기에 IT를 활용한 생산성혁신이 기업경쟁력제고의 중요한 요소이다. IT를 활용한 생산성혁신이 생산성의 향상과 IT를 용용하여 새로운 가치를 창출하는 것이다. 생산성향상을 하는데 과학적으로 생산성의 향상은 핵심적으로 요구되어 생산성 향상에 있어서 IT의 중요성은 더욱 증가한다. 제조 기업의 다양한 요구에 신속하게 대처할 수 있는 생산성 혁신을 이룬 것으로 보인다[8].

이와 같은 문제점을 극복하고 향후 발전적인 중소기업의 정보화 체계를 추구함에 있어, 경영화 중에서도 단기적인 도입 성과를 얻을 수 있는 생산성혁신을 수립하여 중소기업의 공급량 수준에 대한 표준 모듈을 구축하고, 표준화를 위한 S/W 개발 방법론과 기 연구 개발 및 검증으로 중소기업 정보화를 지원하고 있는 중소기업기술정보진흥원에서 표준으로 사용하고 있는 생산성정보화 개발 방법론(PBSDM)을 적용하여 시스템을 구축하고, 시스템에 대한 구축 용이성 및 보편성을 충족하고 목표 달성에 기여 할 수 있으려라 생각된다[9,10].

Keyword : 정보화, 생산정보화, 개발표준모델, 자동화시스템, 성형제조업
일반 관리 분야의 정보화는 많은 부분이 표준화되어 종종
기계에 적용하기가 용이하나, 생산 분야의 정보화는 업종마다
특성이 달라 구축 시 어려움을 느끼고 있는 것으로 나타났다. 이
에 생산설비정보화 분야도 표준화 모델의 개발이 필요하며,
본 연구에서는 생산설비정보화 중에서도 중소기업 생산설비
정보화의 효과를 극대화시킬 수 있는 정형 업종을 대상으로 해
심 프로세스에 대한 표준화 모델을 개발한다.
또한 [그림 1]에서와 같이 실제 작업 시 이미 중식정 중소
기업기술정보화진흥원의 중소기업사업자 사업에서 사용하여 편의
성 및 유호성이 입증된 중소기업 생산설비정보화의 표준 개발
방법론인 PSDM을 활용함으로써 일반성 및 방용성을 높이도
록 하고 있다. PSDM은 프로세스 관리통합의 표준화와 문서양
식을 개발한 프로세스를, 관리방법 등을 제공하여, 프로세스
프로세스 수행 시 상호 협력을 받기로 하고, 프로세스 관련 팀의 생산성
향상과 품질 향상을 도모할 수 있다[11][12].

또한 중소기업의 정보화를 추진함에 있어, 중소기업 경영
진의 관심사는 생산 현장의 생산설비에 대한 정보화이며, 추
진 결과에 대한 경영 효과가 얼마나 높게 나타나는가이다[13].
중소기업 정보화를 지원하고 있는 중소기업기술정보진흥
원은 효과 측정을 위하여 이들 지표에 대한 연구를 수행하고
있으며, 연구 결과로 생산성 관련 측정 지표 등은 <표 2>와
같이 제시하고 있다[14][15].

<table>
<thead>
<tr>
<th>구분</th>
<th>생산성과 관련 측정지표</th>
</tr>
</thead>
<tbody>
<tr>
<td>재무관련</td>
<td>매출액</td>
</tr>
<tr>
<td></td>
<td>재무건당</td>
</tr>
<tr>
<td>고객관련</td>
<td>물량률 또는 단품율</td>
</tr>
<tr>
<td></td>
<td>고객결제일임수</td>
</tr>
<tr>
<td></td>
<td>납기준수율</td>
</tr>
<tr>
<td>내부 프로세스 관리</td>
<td>공정효율 또는 수율</td>
</tr>
<tr>
<td></td>
<td>설비 기능수</td>
</tr>
<tr>
<td></td>
<td>사이트 테그 또는 리드로그</td>
</tr>
<tr>
<td></td>
<td>공정품질조건, 궁극조건</td>
</tr>
<tr>
<td></td>
<td>공정증정기준, 궁극조건</td>
</tr>
<tr>
<td></td>
<td>재정품질, 재정경제</td>
</tr>
</tbody>
</table>

생산설비정보화 지원 사업의 경우도 사업수행계획서 상에
서 총 14개 효과 측정 항목을 제시하고 있으며, <표 3>에서
와 같이 이 중 경량적 측정이 용이한 10개 항목을 대상으로
생형제조업 생산설비정보화 표준 모델 적용 결과의 중소조
업의 생산설비정보화 구축 효과와 비교하여 효과를 검증하고자
한다[16]. 2008년도 생산설비정보화 사업 우수 사례집의 사
례 발표 10개 기업의 도입 전후의 효과 평균은 <표 4>와 같다
[10][17].

<table>
<thead>
<tr>
<th>구분</th>
<th>도입전</th>
<th>도입후</th>
<th>효과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 데이터 도입시간</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(생산설비, 재고관리 등)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 시험작업시간</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(설비물, 설비교차)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 작업메뉴 시간</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 재고관리제품, 설비부품제품</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. 출고조보시간</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(생산설비, 재고관리)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. 수행품질</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(생산설비, 재고관리)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. 물량품질</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(생산설비, 재고관리)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. 생산현장</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(설비물, 설비교차)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. 생산계획서의 작성기능</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(설비물, 설비교차)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. 생산계획서의 평가기능</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
표 4. 중소기업정 생산설비정보화 시설 수립효과 측정 결과 (1) 업체별 등급

<table>
<thead>
<tr>
<th>구분</th>
<th>도입전</th>
<th>도입후</th>
<th>효과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 대기업 도입기간</td>
<td>100%</td>
<td>33%</td>
<td>99% 감소</td>
</tr>
<tr>
<td>2. 소규모기업기간</td>
<td>154%</td>
<td>43%</td>
<td>66% 감소</td>
</tr>
<tr>
<td>3. 것으로 인지 시각</td>
<td>20%</td>
<td>27%</td>
<td>34% 감소</td>
</tr>
<tr>
<td>4. 제조장</td>
<td>70%</td>
<td>65%</td>
<td>15% 감소</td>
</tr>
<tr>
<td>5. 총 제조전년</td>
<td>30%</td>
<td>25%</td>
<td>24% 감소</td>
</tr>
<tr>
<td>6. 바탕화면</td>
<td>평균 9.5</td>
<td>평균 12</td>
<td>34% 감소</td>
</tr>
<tr>
<td>7. 불통상황</td>
<td>35%</td>
<td>23%</td>
<td>33% 감소</td>
</tr>
<tr>
<td>8. 공정배정 비율</td>
<td>24%</td>
<td>18%</td>
<td>36% 감소</td>
</tr>
<tr>
<td>9. 실질적외</td>
<td>80%</td>
<td>95%</td>
<td>88% 감소</td>
</tr>
<tr>
<td>10. 생산성수단</td>
<td>70%</td>
<td>70%</td>
<td>21% 항상</td>
</tr>
</tbody>
</table>

시스템 구축에 따른 시스템 구성은 [그림 3]과 같으며, 현장의 설비에서 Counter정보가 Controller를 통하여 서버로 집계되며, 외부에서도 활용할 수 있도록 구성된다.

III. 성형제조업의 생산설비정보화
시스템 표준화 설계

일반적인 생산 관련 업무 프로세스는 주문 및 생산의뢰, 생산계획, 원자재재구, 작업지시, 원자재관리, 생산량계획, 공정 관리, 품질관리, 제품관리, 출하관리의 형태로 이루어져며, 일반적인 생산관리 프로세스는 [그림 3]과 같다[18][19].

본 연구에서는 생산관리 프로세스 중 단일 프로세스인 원자재수급 처리와 생산량 집계 2개의 프로세스를 표준화 시키고 표준 모듈을 개발한다. 생산 설비에서 발생하는 Counter정보를 서버와 Interface처리하는 Controller는 상용화된 기존 제품 중 어느 것을 사용해도 문제가 없으므로, 위에서와 같이 생산설비정보화 사업 수행 효과 측정에 참여한 10개 업체 중 6개 업계에서 사용한 L1사 제품을 활용한다.

그림 3. 시스템 구성도

중소기업정 기술정보화의 생산설비정보화 개발방법론에 따른 품리테이터 설계 업무의 필요 데이터에 대한 데이터 입력형태와 데이터기능성을 작성하였다[10]. 기본적으로 생산량을 실시간으로 스트로크 수에 따라 연동시킬 수 있는 급행 정보가 필요하며, 원자재 정보 및 작업지시, 생산 제품 및 정보를 필요로 한다. 테이블임하는 〈표 5〉과 같다.

표 5. 테이블 입력형태

<table>
<thead>
<tr>
<th>번호</th>
<th>태이블명</th>
<th>설 명</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EQUIPMENT</td>
<td>장비 정보</td>
</tr>
<tr>
<td>2</td>
<td>PRODUCT</td>
<td>제품 정보</td>
</tr>
<tr>
<td>3</td>
<td>PROCEDURE</td>
<td>SET 품목 정보</td>
</tr>
<tr>
<td>4</td>
<td>MOLD</td>
<td>급행 정보</td>
</tr>
<tr>
<td>5</td>
<td>MATERIAL</td>
<td>원자재 정보</td>
</tr>
<tr>
<td>6</td>
<td>PMATERIAL</td>
<td>포장자 정보</td>
</tr>
<tr>
<td>7</td>
<td>PREHEATING</td>
<td>예열정보</td>
</tr>
<tr>
<td>8</td>
<td>ORDER</td>
<td>주문</td>
</tr>
<tr>
<td>9</td>
<td>PROREQ</td>
<td>생산의뢰</td>
</tr>
<tr>
<td>10</td>
<td>PROCPREM</td>
<td>생산계획</td>
</tr>
<tr>
<td>11</td>
<td>WARNPLAN</td>
<td>작업지시계획</td>
</tr>
<tr>
<td>12</td>
<td>WARKORDER</td>
<td>작업지시</td>
</tr>
<tr>
<td>13</td>
<td>SMATRUSE</td>
<td>원자재 사용 정보</td>
</tr>
<tr>
<td>14</td>
<td>SMATPLOT</td>
<td>원자재 데이터 정보</td>
</tr>
<tr>
<td>15</td>
<td>PRODUNIT</td>
<td>제품 정보</td>
</tr>
<tr>
<td>16</td>
<td>PRODOUT</td>
<td>제품 출고 정보</td>
</tr>
</tbody>
</table>

그림 2. 일반적인 생산부문 업무 프로세스

Fig. 2. General work process of production sector
금형정보데이터들은 본 연구에서 가장 핵심이 되는 중요한 정보 데이터로 모든 생산정보를 만들기 위한 기준 정보로 잡아야 한다. 이를 통해 추정치가 설정되고, 작업 실적이 빠르게 계산 기존 정보가 변경되어 실제 작업 수치가 일치하게 된다. 금형정보 데이터기술서는 <표 6>과 같다.

금형 코드는 성형, 정형, 트리밍으로 구분해서 관리하며 생산량 수치가 직접 관계되는 부분은 성형공이 해당된다. 각각 수량은 1개의 금형에서 1번의 스톱로크당 발생되는 제품 수량을 의미하며, 스톱로크 수 + 조각수량에 의하여 생산수량을 결정할 수 있다. 시간당 생산량은 생산계획 수립 시 참고할 수 있도록, 주문량 / 시간당 생산량에 의하여, 주문량에 대한 생산 시간 예측이 가능하며, 생산선수량 수가 기록하도록 한다.

성형단위당 소모 길이, 소모량은 1개의 금형에서 1번의 스톱로크당 소모되는 원자재 양을 길이(mm)와 양(g)으로 환산해서 관리한다. 성형단위당 스키램은 1개의 금형에서 1번의 스톱로크당 발생되는 스키램량(g)을 관리한다. 성형단위당 제품은 1개의 금형에서 1번의 스톱로크당 발생되는 제품 수량(g)을 관리한다. 조각수량은 생산수량을 관리한다면 성형단위당 제품은 생산량을 관리한다. 성형단위당 소모량은 성형단위당 스키램을 계산한다.

<table>
<thead>
<tr>
<th>번호</th>
<th>금형코드</th>
<th>금형설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MOLDCLS</td>
<td>금형 코드 구분</td>
</tr>
<tr>
<td>2</td>
<td>MOLDSER</td>
<td>금형 일반번호</td>
</tr>
<tr>
<td>3</td>
<td>COPYSER</td>
<td>복제 일반번호 (연)</td>
</tr>
<tr>
<td>4</td>
<td>MOLDNAME</td>
<td>금형 명</td>
</tr>
<tr>
<td>5</td>
<td>MOLDABB</td>
<td>금형 약호</td>
</tr>
<tr>
<td>6</td>
<td>PIECES,PMOLD</td>
<td>조각 수량 (길이)</td>
</tr>
<tr>
<td>7</td>
<td>QTY,ANMOLD</td>
<td>시간당 생산량</td>
</tr>
<tr>
<td>8</td>
<td>BREAKER,EXP</td>
<td>총원내부</td>
</tr>
<tr>
<td>9</td>
<td>USE,LEN,MOLD</td>
<td>성형단위당 소모길이</td>
</tr>
<tr>
<td>10</td>
<td>USE,VEL,MOLD</td>
<td>성형단위당 소모길이</td>
</tr>
<tr>
<td>11</td>
<td>SCRUGMOLD</td>
<td>성형단위당 스키램</td>
</tr>
<tr>
<td>12</td>
<td>PROD,VEL,MOLD</td>
<td>성형단위당 제품</td>
</tr>
<tr>
<td>13</td>
<td>MAKE,DATE</td>
<td>제작일자</td>
</tr>
<tr>
<td>14</td>
<td>RUNTIME</td>
<td>기능시간</td>
</tr>
<tr>
<td>15</td>
<td>REPAIR,NTIME</td>
<td>노수수정</td>
</tr>
<tr>
<td>16</td>
<td>DELETE,FLAG</td>
<td>삭제 여부 (1:삭제)</td>
</tr>
<tr>
<td>17</td>
<td>FIRST,GENERATOR</td>
<td>최초 처리자</td>
</tr>
<tr>
<td>18</td>
<td>FIRST,GENDATE</td>
<td>최초 처리 일시</td>
</tr>
<tr>
<td>19</td>
<td>LAST,UPDATER</td>
<td>최종 처리자</td>
</tr>
<tr>
<td>20</td>
<td>LAST,UPDATER</td>
<td>최종 처리 일시</td>
</tr>
</tbody>
</table>

그림 4. Stroke Counter 정보 수집 표준 모듈

Fig. 4. Standard module of Stroke Counter information collection

상대 생산실적 자동집계 처리 로직은 그림 5와 같으며, 각 장비별 I/F 데이터들을 검사를 Controller I/F 프로그램으로부터의 Count 정보를 받아 장비의 가동 / 비가동을 판정처리하고, 관련 Update Module에 Count정보를 넘겨 관련 데이터를 Update하며, Update 모듈로부터 받은 정보(저사항 초과여부)에 따라 작업자에 경고음을 발령, 작업을 Control한다.

세부처리 기능은 Interface Table에서 순차적으로 Receive Count를 넘겨 Count 처리를 하고, 동일 작업으로의 지시사항을 하부 확인 처리(동일 작업지시의 현 최종 처리), 현 Count와 함께 Count를 비교, 실제 Table Update 처리, 현재 운전정보, 원자재 사용정보, 원자재 LOT별 잔고정보, 작업지시, 생산계획), 성형용수량과 비교, 다음 작업 지시의 금행을 비교 작업을 수행하게 된다.
IV. 구현 및 실험

본 연구 결과물을 성형체로 입증 3개 회사(S사, H사, J사)에 적용한 결과 구현 화면 중에서 생산설비의 작업상태를 모니터링하는 가장 대표적인 화면인 작업리스트 화면과 생산설비 자동 집계 처리 구현 소스를 제공한다.

[그림 7은 현장에서 사용되는 작업 화면으로 현장 장비별로 작업 상태를 표시한다. 작업 시작처리와 종료처리, 원자재 교체 투입 처리가 수행된다. 금형에 대한 기준정보 원자재정보와 제품 생산 정보의 확인이 가능하다.]

표 7. 생산설비 자동 집계 처리 구현 소스 Table 7. Source #1 for the materialization of automatic sum total of Production Results

```plaintext
시작 전
- 현 작업정보에서 STROKE 수량 업데이트
  UPDATE CURGROUP SET CUR_COUNT = CUR_COUNT + 1
WHERE EQUIP_CODE = @PS_EQUIP_CODE
- 현 공정정보의 CUR_COUNT에 STROKE 수량 업데이트
  UPDATE CURGROUP SET CUR_COUNT = CUR_COUNT + 1
WHERE EQUIP_CODE = @PS_EQUIP_CODE AND CUR_COUNT = CUR_COUNT + 1
AND TIME_CLS = @PS_TIME_CLS AND WORK_SEQ = @PS_WORK_SEQ
SELECT CUR_COUNT+1 AS CUR_COUNT, CUR_COUNT
FROM CURGROUP
WHERE EQUIP_CODE = @PS_EQUIP_CODE AND CUR_COUNT = CUR_COUNT + 1
AND TIME_CLS = @PS_TIME_CLS AND WORK_SEQ = @PS_WORK_SEQ
```

그림 6. 원자재 사용 실적 처리 흐름도 Fig. 6. Flow Chart for the Processing of Raw Material Use Result

그림 5. 생산설비 자동 집계 처리 흐름도
Fig. 5. Flow Chart for automatic sum total of production results

셋째 원자재 사용실적 처리 로직은 [그림 6]과 같이, 현 운전정보의 자체 실적을 확인, 적정 자체의 소모원료 여부를 확인, 원자재 Lot별 잔고정보를 업데이트 하고, Setting되는 새로운 자체내역으로 원자재 출고, 사용, Lot별 잔고정보 Entry를 생성하며, 현 운전정보의 원자재 내역과 원자재 정보를 갱신한다.

세부처리 기능은 현 Setting 자체 Lot#를 보여주고 자체 소모 원료를 확인한다. 소모원료가 처리 원자재 정보의 Roll수량을 차감하고, 원자재 Lot별 잔고정보의 소모원료 여부를 Set 한다. 새로운 Setting되는 자체 내역을 입력 받아 원 작업자시 자체와 대조 확인하며, 맞는 경우 Set이는 Setting되는 자체가 기 사용분인지 확인하고, 맞지 않는 경우 신규작업의 자체 교환 작업을 수행하게 된다.
표 8. 생산실적 저장 장치 처리 구현 소스
Table 8. Source #2 for the realization of automatic sum total of Production Results

IF (RUN_CURR_COUNT > RUN_PREV_COUNT) AND (RUN_CURR_COUNT <
(RUN_PREV_COUNT + 10000))
BEGIN
SET RUNADDING_COUNT = RUN_CURR_COUNT -
RUN_PREV_COUNT
SET RUN_LARGE_COUNT = RUN_LARGE_COUNT +
RUNADDING_COUNT
END

-- 임의 작업 완료 확인
UPDATE WORKER SET RUN_LARGE_COUNT = RUN_LARGE_COUNT
WHERE WORKER_Code = WORKER_Code
AND RUN_SIZE = RUN_SIZE
AND RUN_SEQ = RUN_SEQ
AND RUN_DATE = RUN_DATE
AND RUN_MODEL = RUN_MODEL
AND WORKER_Code = WORKER_Code
AND RUN_SIZE = RUN_SIZE
AND RUN_SEQ = RUN_SEQ
AND RUN_DATE = RUN_DATE
AND RUN_MODEL = RUN_MODEL
SELECT RUN_LARGE_COUNT FROM WORKER
WHERE WORKER_Code = WORKER_Code
AND RUN_SIZE = RUN_SIZE
AND RUN_SEQ = RUN_SEQ
AND RUN_DATE = RUN_DATE

생산실적정보화를 3개의 성형제조업에 적용하고, 적용한 결과와 내용을 각 회사별 생산량간으로 5명씩 선발하여, 효과 측정 항목에 대한 설문 조사와 실시하였고, 4번째 10명은 회사 결산서를 근거로 작성하였으며, 결과는 <표 5>와 같이 나타나고 있다.

표 9. 성형제조업 표준모델 적용 효과 평균
Table 9. Average of the Effect of the Application of Standard Module for Molding business

<table>
<thead>
<tr>
<th>분</th>
<th>도입전</th>
<th>도입후</th>
<th>효과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 제조업 체계 시간</td>
<td>12분</td>
<td>8분</td>
<td>50% 감소</td>
</tr>
<tr>
<td>2. 사업계획시간</td>
<td>10분</td>
<td>5분</td>
<td>50% 감소</td>
</tr>
<tr>
<td>3. 작업준비 시간</td>
<td>40분</td>
<td>20분</td>
<td>50% 감소</td>
</tr>
<tr>
<td>4. 제조량</td>
<td>15300만원</td>
<td>16000만원</td>
<td>5% 증가</td>
</tr>
<tr>
<td>5. 총 제조요소시간</td>
<td>3시간</td>
<td>2시간</td>
<td>50% 감소</td>
</tr>
<tr>
<td>6. 배달기간</td>
<td>평균 5일</td>
<td>평균 3일</td>
<td>40% 감소</td>
</tr>
<tr>
<td>7. 환경요소</td>
<td>6%</td>
<td>3%</td>
<td>50% 감소</td>
</tr>
<tr>
<td>8. 경제적</td>
<td>0%</td>
<td>0%</td>
<td>50% 감소</td>
</tr>
<tr>
<td>9. 실적계획</td>
<td>10%</td>
<td>9%</td>
<td>20% 증가</td>
</tr>
<tr>
<td>10. 생산성(수돌)</td>
<td>80%</td>
<td>90%</td>
<td>5% 증가</td>
</tr>
</tbody>
</table>

기존 제조업의 생산실적정보화 구축 효과 평균과 본 연구 결과에 따른 표준모델은 성형제조업에 적용한 결과를 비교한 결과 <표 10>와 같이 성형제조업 적용 효과가 우수한 것으로 나타나고 있다.

표 10. 일반제조업과의 정보화 효과 비교
Table 10. Comparison of the Effect of Informatization with general manufacturing business

<table>
<thead>
<tr>
<th>구분</th>
<th>일반 제조업</th>
<th>표준모델화 적용</th>
<th>차이</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 데이터 도입시간</td>
<td>59% 감소</td>
<td>83% 감소</td>
<td>22% 우수</td>
</tr>
<tr>
<td>2. 사업계획시간</td>
<td>66% 감소</td>
<td>83% 감소</td>
<td>17% 우수</td>
</tr>
<tr>
<td>3. 작업준비 시간</td>
<td>34% 감소</td>
<td>50% 감소</td>
<td>16% 우수</td>
</tr>
<tr>
<td>4. 제조량</td>
<td>16% 감소</td>
<td>12% 감소</td>
<td>10% 감소</td>
</tr>
<tr>
<td>5. 총 제조요소시간</td>
<td>24% 감소</td>
<td>33% 감소</td>
<td>9% 감소</td>
</tr>
<tr>
<td>6. 배달기간</td>
<td>34% 감소</td>
<td>40% 감소</td>
<td>6% 감소</td>
</tr>
<tr>
<td>7. 환경요소</td>
<td>33% 감소</td>
<td>50% 감소</td>
<td>17% 감소</td>
</tr>
<tr>
<td>8. 경제적</td>
<td>0% 감소</td>
<td>0% 감소</td>
<td>-</td>
</tr>
<tr>
<td>9. 실적계획</td>
<td>12% 황당</td>
<td>20% 황당</td>
<td>8% 우수</td>
</tr>
<tr>
<td>10. 생산성수돌</td>
<td>21% 황당</td>
<td>5% 황당</td>
<td>29% 우수</td>
</tr>
</tbody>
</table>

VI. 결론

본 연구에서는 작성된 성형제조업에 대한 표준화 모델의 효율성 및 적용 우수성을 입증하기 위하여 생산실적정보화 사 업에 참여한 대표적인 성형 업체에 적용하였고, 성과에 대해 적극 추정하였다. 본 연구에서 제시하는 성형제조업의 표준화 설계를 적용하여 실현한 측정 결과는 일반 제조 업계에 비해
여 효과가 우수한 것으로 나타나고 있으며, 시스템의 적용 용이성이 높아지며 신뢰성과 절차가 우수한 것으로 나타난다. 특히 중소기업의 시스템 운영의 최대 관건은 유지보수의 용이성이나 표준화된 모듈을 사용함에 따라 유지보수가 편리한 것으로 나타난다.

항후 연구과학적, 셋째 생산현장에서 발생하는 정보를 수집/분석 뿐만 아니라 생산공정을 제어/감시하여 경영자 및 작업자의 의사결정을 지원하는 생산현장 정보화로 개발 보완되어야 하며, 동시에 전자적자원관리시스템(ERP)과 연동하여 최고경영자에게 제공되는 경영정보시스템을 지원 할 수 있도록 연구 개발되어야 할 것이다. 셋째 활용방법에 대한 충분한 교육과 임직원들의 정보화 인식이 부족하거나 각종 경영정보시스템과 효과적으로 연동되지 못한다면 총합적으로 비용과 시간의 낭비를 가져올 수 있으므로 개발 완료후 이에 대한 지속적인 활용 및 연구와 충분한 중단가기의 계획이 수립되어야 한다. 또한 본 연구에서 대상으로 한 성장형업종에 의한 테마조직중증에의 타 제조업종의 현황을 분석하고 중소기업의 생산설비정보화의 표준화에 대한 연구가 이루어져야 할 것이다. 본 연구된 표준화와 비교 분석되어 중소기업의 생산설비정보화에 선택의 폭은 도움이 되고 경영성과에 얻은 영향을 줄 수 있게 되길 기대한다.

참고문헌

저자 소개

윤경배

1986 : 인하대학교 수학과 (학사)
1994 : 인하대학교 정보공학과
1998 : 시각디자인 정보기술전공학사
2003 : 인하대학교 전자공학박사
1986~1987 : 대우자동차주(MIS)
1988~1991 : LG-EED(주)가학연구소
1992~1997 : 동부정보기술(주) 연구소
1986~현재 : 김포대학교 정보과 교수

研究분야 : 정보시스템, 데이터마이닝, CMM, 전자적자원관리(ERP), 생산설비정보화, 지문 및 음성 인식
Phone : 010-3354-9230
E-mail : kbbyoon@kimpo.ac.kr