Effect of Cu-Addition and Die-Upset Temperature on Texture in Die-Upset Nd-Lean Nd-Fe-B Alloys

H. W. Kwon\(^1\)\(^*\) and J. H. Yu\(^2\)

\(^1\)Pukyong National University, Busan 608-739, Korea
\(^2\)Korea Institute of Materials Science, Changwon, Gyeongnam 641-831, Korea

(Received 19 February 2010, Received in final form 10 March 2010, Accepted 11 March 2010)

The effects of Cu-addition and die-upset temperature on the texture in the die-upset Nd-lean Nd\(_{12}\)Fe\(_{81.5-y}\)Cu\(_y\)Ga\(_{0.5}\)B\(_6\) (y = 1, 2) alloys showed a considerable texture. Texture in the Nd-lean alloys developed through basal plane slip deformation. The Cu-addition reduced the melting point of grain boundary phase facilitating grain gliding during the die-upsetting, and providing a greater chance for the Nd\(_2\)Fe\(_{14}\)B grains to meet the deformation conditions. Die-upsetting at higher temperature facilitated grain gliding and plastic deformation, thus enhancing texture.

Keywords: permanent magnets, Nd-Fe-B, texture, die-upset

1. Introduction

Die-upsetting is a unique process by which the hard magnetic Nd\(_2\)Fe\(_{14}\)B grains in a melt-spun Nd-Fe-B alloy are aligned by simple deformation at an elevated temperature. The likelihood of texture formation by die-upset is heavily dependent upon alloy composition, particularly the Nd-content. Thus far, for an Nd-rich Nd-Fe-B alloy with an Nd-content well over the Nd\(_2\)Fe\(_{14}\)B stoichiometric composition (11.8 at%), the die-upset induced a good texture. However, for an Nd-lean Nd-Fe-B alloy with an Nd-content near or under the Nd\(_2\)Fe\(_{14}\)B stoichiometric composition, die-upset only led to a poor texture. The good texture in the die-upset Nd-rich alloy was closely related to the presence of an abundant Nd-rich grain boundary phase, which is liquid during die-upsetting. The texture in the Nd-rich alloy develops by taking advantage of the liquid via a stress-induced preferential grain growth mechanism [1-3]. Meanwhile, the Nd-lean alloys bear little to no Nd-rich grain boundary phase, and thus it would seem natural that in the Nd-lean alloys a good texture cannot be achieved by the die-upset. However, an appreciable texture has recently been achieved in a die-upset Nd-lean alloy [4-6]. In the present study, the effects of Cu-addition and die-upset temperature upon the texture of the die-upset Nd-lean Nd-Fe-B alloys were investigated.

2. Experimental Work

The Nd\(_{12}\)Fe\(_{81.5-y}\)Cu\(_y\)Ga\(_{0.5}\)B\(_6\) (y = 9-12, y = 0-2) starting alloys were melt-spun, and the obtained ribbon briefly milled. The milled powder was then hot-pressed at 750 °C, and subsequently die-upset at various temperatures ranging from 750 to 900 °C to achieve an approximate 75% height reduction. Process details of the hot-pressing and die-upsetting have been previously published [7]. Texture in the die-upset magnets was evaluated by the ratio of \(M_{\|}/M_{\perp}\) where, \(M_{\|}\) and \(M_{\perp}\) are the magnetization at 7 kOe in the first quadrant of the demagnetisation curve parallel and perpendicular to the pressing direction. The demagnetisation curves (corrected using a demagnetising factor of 0.33) were measured using VSM at room temperature after pre-magnetizing with a 50 kOe pulsing field. Differential thermal analysis (DTA) was performed in Ar gas using the hot-pressed sample (100 mg). The microstructure of the die-upset sample was examined by observing the fracture surface of the sample using SEM after brief cracking.

*Corresponding author: Tel: +82-51-629-6352
Fax: +82-51-629-6353, e-mail: hwkwon@pknu.ac.kr

© 2010 Journal of Magnetics
Results and Discussion

Fig. 1 shows the demagnetisation curves of the die-upset Nd-lean alloys (Nd$_{12}$Fe$_{81.5}$Ga$_{0.5}$B$_6$ and Nd$_{9}$Fe$_{84.5}$Ga$_{0.5}$B$_6$) measured parallel and perpendicular to the pressing direction. The Nd-lean alloys die-upset at 750°C showed poor texture. The poor texture was not improved even at higher temperature as shown in Fig. 2. The grain shape in the die-upset sample evidenced the poor texture. As shown in Fig. 3, the grains were in equi-axed shape, with no grain texture observed. The negligible texture in these Nd-lean alloys was attributed primarily to the lack of an Nd-rich grain boundary phase. Fig. 4 shows the DTA results of the hot-pressed Nd-Fe-B alloys with different compositions. The endothermic event around 650°C corresponded to the melting of the Nd-rich grain boundary phase in the alloys. No endothermic event for the alloy with an Nd-content of 9 at% indicated an absence of the grain boundary phase (Fig. 4(a)). Although some grain boundary phase existed in the alloy with a 12 at% Nd-content (Fig. 4(b)), it was much smaller compared to that for the Nd-rich alloy with a 13.5 at% Nd-content (Fig. 4(d)). Development of a texture in a die-upset Nd-Fe-B alloy was closely related to the Nd-rich grain boundary phase. The Nd-rich alloy (13.5 at% Nd) had a typical composition with good texture after the die-upset. This Nd-rich alloy inherently contained a considerable amount of Nd-rich grain boundary phase, became liquid during the die-upset. In the Nd-rich alloy, the texture developed via a stress-induced preferential growth of the Nd$_2$Fe$_{14}$B grain by taking advantage of the abundant liquid grain boundary phase [1-3]. During the die-upsetting, unfavourable grains, of which the c-axis is out of the pressing direction, are dissolved into the liquid grain boundary phase and precipitated preferentially on the lateral surface of the favourable grains, of which the c-axis is parallel to the pressing direction. The Nd-lean alloys studied herein bore little grain boundary phase.
thus the stress-induced preferential grain growth could not operate.

Fig. 5 shows the effects of Cu-addition and die-upset temperature upon the texture in the Nd-rich Nd$_{12}$Fe$_{81.5-y}$Cu$_{y}$Ga$_{0.5}$B$_{6}$ alloys. The Cu-containing alloys showed textures in the samples die-upset at 750 °C much higher than the alloy without Cu. Moreover, unlike the alloy without Cu the Cu-containing alloys showed much improved texture when die-upset at higher temperatures. The induced texture in the Cu-added alloy was evidenced by the morphology of the grains in the sample die-upset at higher temperatures. As shown in Fig. 6(a), the grains in the Cu-added sample had a texture, whereby the grains were elongated and the long axis aligned perpendicular to the pressing direction. The texture in the Cu-containing Nd-rich alloy seems to have been induced by a slight enrichment of the grain boundary phase due to the Cu-addition. However, the DTA results showed that the increase in the amount of grain boundary phase by Cu-addition was insignificant (Fig. 4(b) and 4(c)). The lack of a grain boundary phase in the Cu-containing Nd-rich alloy could also be evidenced by the fracture surface morphology of the die-upset sample. In the Cu-added Nd-rich alloy the fracture generally occurred in a trans-granular mode (Fig. 6(a)), and this fracture mode was radically different from that in the Nd-rich alloy, in which the fracture occurred in an inter-granular mode along the abundant grain boundary (Fig. 6(b)). The trans-granular fracture in the Cu-added Nd-rich alloy indicated a lack of the grain boundary phase. Although the Cu-addition caused insignificant enrichment of the grain boundary phase, a considerable texture developed in the Cu-added alloys, indicating that the texture in the Cu-added Nd-rich alloy developed by a mechanism different from the stress-induced preferential grain growth operating in the Nd-rich alloy. Decisive evidence for a different texture formation mechanism in the Cu-added Nd-rich alloy was found in the temperature dependence of the texture. When the texture in a die-upset Nd-Fe-B alloy developed via the stress-induced preferential grain growth of crystallographically favourable grains, it usually decreased with increasing die-upset temperature [7]. In the present case, however, the reverse was true, in which the texture increased with increasing die-upset temperature. The texture in a die-upset Nd-rich alloy is known to develop by a basal plane slip deformation mechanism [7]. In this mechanism an easy grain boundary gliding during the die-upsetting facilitates texture inducement. As seen in Fig. 4(c), the Cu-addition significantly reduced the melting point of the grain boundary phase (from 680 to 650 °C approximately). A previous study reported that the Cu atoms added to the Nd-Fe-B alloy primarily segregated at the grain boundaries rather than dissolved into the Nd$_{12}$Fe$_{81}$B matrix grains [8]. The melted grain boundary region probably possessed higher fluidity, thus providing better lubrication, and facilitating grain gliding during die-upsetting. Therefore, more grains may have a chance where the magnitude of the resolved shear stresses along the basal plane reaches a critical value for plastic deformation. This effect may become more profound as the die-upset temperature increases because the lubrication of the grain boundary is enhanced. Simultaneously, the critical value for the slip deformation is reduced at higher die-upset temperatures and the Nd$_{12}$Fe$_{81}$B grains deform more readily. These two
factors of the Cu-addition and higher die-upset temperatures may possess synergy sufficient for inducing a texture in the die-upset Nd-lean Nd-Fe-B alloys.

Conclusion

A considerable texture was developed in the die-upset Nd-lean \(\text{Nd}_{12}\text{Fe}_{81.5-y}\text{Cu}_y\text{Ga}_0.5\text{B}_6 \) \((y = 1, 2)\) alloys through basal plane slip deformation. The Cu-addition to the Nd-lean Nd-Fe-Ga-B alloys significantly reduced the melting point of the grain boundary phase, facilitating grain gliding during the die-upsetting, more grains thus have a chance where the magnitude of the resolved shear stresses along the basal plane reach a critical value for plastic deformation. At higher die-upset temperatures grain gliding and plastic deformation were enhanced. Accordingly, this could come in to play for texture improvement.

Acknowledgement

The present work was supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea.

References