접합유리와 반응된 Fe-Hf-N 박막의 연지기 특성

김경남·김병호
고려대학교 재료공학과, 서울 136-701

제해준*
한국과학기술연구원 재료연구부, 서울 136-791

(2002년 11월 15일 수신, 2003년 1월 13일 최종수정일 수용)

영치리온 도체에 따라 접합유리와의 화학적 반응이 Fe-Hf-N/SiO₂ 및 Fe-Hf-N/Cr/SiO₂ 박막의 연지기 특성은 연지기의 경우에 따라 크게 다르게 되어 있으며, 600°C에서 코하트화함을 1Kg, 보라석이 27 Oe, 10 MHZ에서의 유속특성을 70으로 자기의 특성이 극히 영향되었다. 이는 접합유리와의 화학적 반응에 의해 Fe-Hf-N 박막의 H₂O, Fe₃O₄ 등으로 변화되기 때문에 나타났다. Fe-Hf-N/Cr/SiO₂ 박막의 경우, 600°C에서 코하트화함 13.5 KJ, 보라석이 4 Oe, 10 MHZ에서의 유속 특성을 70으로 Fe-Hf-N/SiO₂ 박막보다 연지기 특성 영향이 덜 잦았다. 이는 Fe-Hf-N/Cr/SiO₂ 박막의 Cr 증이 Fe-Hf-N 박막의 산화물로 변하게 되며, 일부분에서 HfO₂가 생성되고 나머지는 원래의 α-Fe 상을 유지하기 때문에라고 한다.

주제어: Fe-Hf-N 박막, 접합유리, 화학적 반응, Cr 중

I. 서 론

자기heap 제도로서 연지기 박막에 요구되는 특성 중 가장 중요한 것은 수상한 연지기 특성의 보완과 해드제조공정에서의 연지기 특성의 유다이나. 현재 자기heap을 고대로 접합유리도 연지성 박막으로는 Fe 계 창조세정형(nano-crystalline) 연지성 박막이 가장 적절한 것으로 알려져 있으며, Fe 계 창조세정형 박막으로는 Fe-N,N, Fe-Al/N,C, Fe-TM-C 계(TM=Hf, Zr, Ta, Nb 등) 등이 있다[1]. 이 중 Fe-N 계 박막은 포화저축도가 높으나 영치리에 의해 연지기 특성이 영향이 커져 영치리에 감도가 350-450°C 정도로 매우 낮게 되고 심해도 사용 가능하다[2,3]. 그러나 Fe-TM-N 계 및 Fe-TM-C 계 박막은 550°C 정도에서도 연지기 특성이 영향이 사라지고, 16 K도의 높은 포화저축도와 0.5 Oe 이하의 보라석, 10 MHZ에서 3500 이상의 유속특성을 갖는 수상한 박막이 연지기를 보이고 있다[4,5]. 이들 박막은 충격

시 형성된 전이 금속의 질화물(TM-nitrides)이나 탈석화물(TM-carbides)가 α-Fe 상의 결정체 성장을 억제하여 미세한 α-Fe 결정체가 형성되어, 고밀도 기록매체 과주파수에 대응하는 수상한 특성을 보고되어 있다[4,5].

본 연구는 MIG(Metal-in-Gap) 해드의 관련된 것으로서, MIG 해드 제조 시 500-600°C의 온도에서 유리접합과정을 필요로 하기 때문에 연지성 박막은 다음과 같은 특성상의 문제점이 발생할 수 있다.

다음으로, 연지성 박막과 접합유리와의 고온에서의 화학적 반응에 의해 연지성 박막의 특성이 변할 수 있다. 이러한 연지성 박막과 접합유리와의 계면반응에 의한 특성 변화에 대

연구에 따르면 계면에서의 화학적 반응에 의해 페라이트의 조성이 변화하여 자기적 특성이 영향을 미쳤다고 보고하였다. 이러한 사실로 유추해 보면 MIG 해드에서도 연지성 박막과 접합유리와의 계면에서의 화학적 반응이 금속제성박막의 연지기 특성에 미치는 영향을 미칠 것으로 생각된다.

따라서 본 연구에서는 Fe 계 창조세정형 연지성 박막 중 수상한 연지기 특성과 내열성을 동시에 갖춘 Fe-Hf-N 박막을 사용하여, 해드 제조 시 입자 재료로 사용되는 SiO₂ 층을 올린 Fe-Hf-N/SiO₂ 박막 및 Cr 및 Cr O₃ 층을 올린 Fe-Hf-N/Cr/SiO₂ 2층의 박막을 재료하여, 접합유리와의 반응에 따른 박

*Tel: (02)958-5514, E-mail: hjje@kist.re.kr
막들의 연작기 특성 변화를 조사하고자 한다. 열처리 온도를 변화시켜, 유리접합 이후 박막의 연작기 특성, 결정구조, 결정밀도, 결정작용도 및 결정상 변화 등을 분석함으로써, 박막과 접합유리의 반응이 Fe-Hf-N/SiO₂ 및 Fe-Hf-N/Cr/SiO₂ 박막의 연작기 특성에 미치는 영향을 조사하였다.

II. 실험 방법

Fe-Hf-N 박막은 Fe-Hf의 비가 89:11(at%)인 혼합 털개를 사용하여 N₂ 반응용 sputtering방법으로 Ar+N₂ 분위기에서 제조되었다. 초기 진공도를 1×10⁻⁶ Torr 이하로 하여, Ar + N₂ 가스를 투과하여 작업공간이 5×10⁻⁴ Torr가 되게 하였다. 기판제료는 비쳐성지형으로서 Mn-Zn 형페라이트와 열팽창율이 비슷한 다결정 CaTiO₃를 선정하였으며, 11.5×11.5×0.5 mm 크기의 구조 기판 위에 자동 배출기로 한층 Cr가 SiO₂를 각각 200 A 두께로 축적하였다. 그 외에 Fe-Hf-N 박막은 1.5±0.1 μm의 두께로 축적하고, SiO₂, Cr, 및 Fe-Hf-N/SiO₂ 박막시편을 Cr 300 A 및 SiO₂ 900 A 두께로 축적하여 Fe-Hf-N/Cr/SiO₂ 박막시편을 준비하였다.

본 실험에 사용된 접합유리는 실제 자기역설 제조용으로 사용되는 녹음용 Pho-SiO₂-B₂O₃-ZnO-Fe₂O₃ 유리이며, 지름, 열팽창률, 적합성 등의 특성을 갖고 있다. Table 1에는 CaTiO₃, Fe-Hf 합금 및 접합유리의 열팽창 측정 결과를 나타 내었다. 접합유리는 11×11×1 mm의 크기로 가공한 후 박막 접착에 사용한 펄어 0.05 μm 알루미늄 분말로 정면연마하여 박막 시편 위에 놓고 열처리하였다.

상기 조건으로 준비된 박막시편을 전공에서 550℃~20분간 열처리한 이후의 연작기 특성은 평균적으로 포화자극 172 kG, 보력 0.5 Oe, 10 MHz에서의 유효류내구가 1460 정도되었다. 이러한 특성은 기준으로 N₂ 분위기에서 Fe-Hf-N/SiO₂ 및 Fe-Hf-N/Cr/SiO₂ 박막시편을 각각 550, 575, 600, 625, 650℃에서 20분간 접합유리와 함께 열처리하여 연작기 특성 변화를 측정하였다. N₂ 분위기에서 연처리는 6N 고순도 N₂ 가스를 150 SCCM의 유속으로 투과주시며 5℃/min으로 승운시켰다. 이때 진공공기의 영향을 방지하기 위하여 진공펌프로 공기를 빼는 후 N₂ 가스를 주입시킨 후 열처리하였다.

<table>
<thead>
<tr>
<th>Table 1. Thermal properties of Fe-Hf alloy, CaTiO₃, and bonding glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal expansion coefficient (α<sub>3,7</sub>) (×10⁻⁶/°C)</td>
</tr>
<tr>
<td>Fe-Hf alloy</td>
</tr>
<tr>
<td>CaTiO₃</td>
</tr>
<tr>
<td>Bonding Glass</td>
</tr>
</tbody>
</table>

Fig. 1. Effect of annealing temperature on effective permeability, saturation magnetization (μ₀M_s) and coercivity (H_c) of Fe-Hf-N/SiO₂ films reacted with bonding glass.
응된 박막의 표면 및 내부의 조성변화를 측정하였다. 점합유리와 반응된 박막 및 점합유리계면의 미세구조는 광석현미경 및 SEM(S-4200 FE-SEM, HITACHI)으로 분석하였다.

III. 결과 및 고찰

Fig. 1에는 550 ℃에서 650 ℃까지 점합유리와 반응된 Fe-Hf-N/SiO₂ 박막의 연가기 특성 변화를 나타내었다. 점합유리와 반응된 박막의 연가기 특성이 변화하는 것으로 나타났다. 점합유리와 반응된 Fe-Hf-N/SiO₂ 박막의 박막의 결정구조가 550 ℃에서 12.5 kG 정도로 떨어졌으며 박막이 연가함에 따라 600 ℃에서 1 kG 정도로 급격히 감소하였다. 보자막은 550 ℃에서 2 Oc 정도 이었다가 연가하면 600 ℃까지 급격히 증가하여 27 Oc의 값을 나타내었다. 이렇게 연가하는 오름과 650 ℃에서 16 Oc의 값을 나타냈다. 연가의 온도에 따른 유 효부작용은 550 ℃에서 이미 450 ℃ 정도로 심하게 떨어졌으며, 600 ℃까지 급격히 감소하여 70 정도로 나타났으며, 그 이후 550 ℃까지 50 정도로 거의 변화하지 않았다. 결과적으로 Fe-Hf-N/SiO₂ 박막의 연가기 특성은 550 ℃에서는 점합유리와의 반응에서부터 급격히 발생되며 600 ℃까지 감소하였다. 특이한 것은 보자막의 경우 550 ℃부터 600 ℃까지 감소하다가 이후 온도는 600 ℃ 이후부터는 점합유리와의 화학 반응에 의해 Fe-Hf-N/SiO₂ 박막의 연가기 특성이 소실되어 자기저항특성이 거의 사라져서 정상으로 생각된다.

Fig. 2. Optical and SEM microstructures of Fe-Hf-N/SiO₂ films reacted with bonding glass at various temperatures. (a) and (b) 550 ℃, (c) and (d) 600 ℃, (e) and (f) 650 ℃.
Fig. 2에는 각각 550, 600, 650 ℃에서 접합유리와 반응된 Fe-Hf-N/SiO$_2$ 박막 단면의 광학 및 SEM 미세구조 사진을 나타내었다. 550 ℃에서 반응된 Fe-Hf-N/SiO$_2$ 박막의 경우 겉의 원형을 그대로 유지하고 있으나, 접합유리와 박막이 접해 있는 계면의 유리 부분에 크기가 0.1～1 μm 정도인 하얀 석출품이 가공이 널게 생성되었음을 보 수 있는데, 이러한 석출품과 가공은 접합유리와 반응에 의해 생성된 것으로 추측된다. 600 ℃에서는 이러한 석출품들이 계면주위에 밀집되지 않고 유리 내에 널게 분산되어 있고, 박막은 유리에 침식되어 국부적으로 소실되며 미세구조가 심하게 변형되었다. 650 ℃에서 열처리한 경우에는 박막이 유리와 반응에 의해 거의 소실된 것을 볼 수 있다. 이러한 미세구조의 변화는 접합유리와 반응된 Fe-Hf-N/SiO$_2$ 박막의 조성과 결정상의 변화가 있을음을 의미한다.

Fig. 3에는 550 ℃에서 650 ℃까지 접합유리와 반응된 Fe-Hf-N/SiO$_2$ 박막의 단면을 따라 접합유리에서 기판까지 Fe, Si, Pb, O 성분의 양을 분석한 EPMA 결과를 나타내었다. Fig. 3(a)에서 화성표가 가리키는 A는 Fig. 2에서 언급한 하얀 석출품으로, EPMA 조성 분석 결과로 Pb를 확인할 수 있었다. 이러한 Pb 생성원으로, 다양하게 PbO-SiO$_2$-B$_2$O$_3$-ZnO-FcO 접합유리와 Fe-Hf-N/SiO$_2$ 박막과의 반응 시, Fe-Hf-N 박막위에 존재하는 SiO$_2$ 층은 유리에 쉽게 녹화되어 환원되기 쉬운 Fe나 Hf가 유리의 O와 반응함에 따라, 상대적으로 저온점을 위한 접합유리의 과량성분인 PbO가 Pb로 환원되기 때문에 발생한다. Fig. 2의 광학사진에서 볼 때 이러한 Pb 석출품들은 박막과 접합유리와의 반응에 의해 계

Fig. 3. Lines traced by characteristic X-ray of Fe, Si, Pb and O of Fe-Hf-N/SiO$_2$ films reacted with bonding glass at various temperatures. (a) 550 ℃, (b) 575 ℃, (c) 600 ℃, (d) 625 ℃, (e) 650 ℃.
Fig. 4. Effect of annealing temperature on effective permeability, saturation magnetization ($4\pi M_s$) and coercivity (H_c) of Fe-Hf-N/Cr-SiO$_2$ films reacted with bonding glass.

Fig. 5에는 각각 550, 600, 650 °C에서 점화유리와 반응된 Fe-Hf-N/Cr-SiO$_2$ 박막 단면의 광학 및 SEM 미세구조 사진을 나타내었다. Fe-Hf-N/Cr-SiO$_2$ 박막의 경우 600 °C 열처리 후에도 박막이 원형 그대로 유지되고 있으며, 점화유리 내부에 기포가 발생하였으나 Pb 석출은 없었다. 650 °C에서는 점화유리의 잔해에 의해 박막이 부분적으로 소실되고, 미세구조도 약간 변형되었으며 Pb 석출도 관찰되었다.

Fig. 6에는 550 °C부터 650 °C까지 점화유리와 반응된 Fe-Hf-N/Cr-SiO$_2$ 박막의 단면을 따라 Fe, Si, Pb, O 성분분포를 분석한 EPMA 결과를 나타내었다. 운도가 증가함에 따라 Fe-Hf-N 박막내의 Fe의 함량이 감소하였지만 650 °C 열처리 후에도 원래의 50% 이상의 농도를 유지하고 있으며, 두께로 투과도 크게 줄어 나아가고 있음을 알 수 있다. O의 경우는 열처리 운도가 증가함에 따라 Fe-Hf-N 박막내의 O의 농도가 미량의 증가하고 Fe-Hf-N/SiO$_2$ 박막에서도 더 크게 줄어 나아가할 수 있다.

점화유리와 반응된 Fe-Hf-N/SiO$_2$ 박막과 Fe-Hf-N/Cr-SiO$_2$ 박막의 경감상 변화를 분석하기 위하여 다음과 같이 XRD 시험을 준비하였다. 타입은 CaTiO$_3$ 기판 위에 Fe-Hf-N 종착시 간을 2분으로 늘려 3 μm 정도의 두께를 Fe-Hf-N/SiO$_2$과 Fe-Hf-N/Cr-SiO$_2$ 박막을 종착시킨 후 600 °C에서 점화유리와 함께 열처리하였다. 열처리 이후에 박막과 반응된 상부의 점화유리가 연마하여 제거한 후, XRD 분석하여 결과를 Fig. 7에 나타내었다. 점화유리와 반응된 Fe-Hf-N/SiO$_2$ 박막에서는 HfO$_2$가 주된 결정상으로 나타났으며, 그 외에 Fe$_2$O$_3$ 성과 기판 CaTiO$_3$ 성이 검출되었고, α-Fe 성은 검출되지 않았다.

Figs. 2, 3에서 예상했듯이 HfO$_2$나 Fe$_2$O$_3$ 결정상은 점화유리와 반응에 의해 Fe-Hf-N 박막이 환화되면서 나타난 피크로 생각되며, Fe-Hf-N 박막이 환화될 때 가장 선명하게 보이는 Hf가 먼저 HfO$_2$ 상을 형성하고, 다음으로 Fe가 Fe$_2$O$_3$로 환화되는 것으로 판단된다. 점화유리와 반응된 Fe-Hf-N/Cr-SiO$_2$ 박막의 경우에는 CaTiO$_3$ 이외에 미약한 HfO$_2$ 결정상이 검출되었다.

Figs. 4에는 Fig. 7에서 XRD 분석한 시험을 170 A/min 속도로 분석한 AES depth profile 결과를 나타내었다. 먼저 박막 표면의 SiO$_2$와 Cr층은 유리층으로 녹아 사라진 것으로 나타났으며, 표면에 검출된 Si는 유리성분이 흩두한 것으로 생각된다.

점화유리와 반응된 Fe-Hf-N/SiO$_2$ 박막의 경우 O의 조성은 표면에서 35 at%를 나타내었고 0.7 μm 내부까지 15 at%로 점차 감소하며, Hf의 경우는 O의 조성과 비교하여 거의 2:1의
바울을 유지하면서 감소하였다. 이는 XRD 결과에서 확인했듯이 대부분의 O는 Hf와 반응하여 HfO₂가 형성됨을 의미하며, HfO₂가 형성되고 남은 O가 Fe와 결합하여 소량의 Fe₂O₃ 상이 형성되는 것으로 생각된다. O의 조성은 밀도에 따라 달라질 수 있으며, 박막 표면에서 내부로 깊숙히 이르러 HfO₂, Fe₂O₃ 등의 산화물은 점차적으로 감소하는 것으로 판단된다. 표면에서 Fe의 조성은 40 at%정도이며, 박막 내부로 깊숙히 이르르면서 1.5 μm에서 62 at%까지도 관찰할 수 있다. Fe-Hf-O 박막에 관한 연구결과의 결과에 따르면 Fe의 함량이 감소하면서 연작가 특성은 변화되었다. Fe의 함량이 60 at%이하에서 오-Fe가 의해 이루어진 자구들이 상대적으로 증가한 산화물에 의한 고립되어 magnetic coupling의 역할이 관찰되면서 대부분의 연작가 특성이 소멸된다고 보고하였다. 이러한 결과로 볼 때, Fig. 1에서의 600°C에서 접합유리와 반응한 Fe-Hf-N/SiO₂ 박막의 연작가 특성의 소멸은 Fe-Hf-N 박막의 산화에 의한 HfO₂, Fe₂O₃ 등의 산화물의 증가와 Fe 함량의 감소 때문인 것으로 판단된다.

접합유리와 반응한 Fe-Hf-N/Cr/SiO₂ 박막의 경우 Fe-Hf-N/SiO₂에서와 달리 약 0.6 μm까지 산화층이 형성되며, Fe-Hf-N/SiO₂와 비교할 때 전체적으로 O의 함량이 적은 것을 확인할 수 있다. 이는 Fe-Hf-N/Cr/SiO₂ 박막이 Fe-Hf-N/SiO₂ 박막에서 보다 산화가 덜 일어나고 있음을 의미한다. Hf의 조성변화에서 볼 때, Hf₂O는 O와 반응하여 HfO₂를 형성한 것으로 판단되며, Fe와 N은 O의 조성변화와 반비례적인 경향을 나타내고 있다. 또한 Fe-Hf-N/SiO₂ 박막과 비교했을 때 표면에서부터 Fe의 조성이 60 at% 미만인 2000 Å 정도의
Fig. 6. Lines traced by characteristic X-ray of Fe, Si, Pb and O of Fe-Hf-N/Cr/SiO₂ films reacted with bonding glass at various temperatures. (a) 550°C, (b) 575°C, (c) 600°C, (d) 625°C, (e) 650°C.

Fig. 7. XRD diffraction patterns of Fe-Hf-N/Cr/SiO₂ (a) and Fe-Hf-N/Cr/SiO₂ films (b) reacted with bonding glass at 600°C.

구간을 제외하면 Fe의 조성이 70 at% 이상을 유지하고 있음을 볼 수 있다. 이상의 결과를 바탕으로 앞서 예상한대로 Fe-Hf-N/Cr/SiO₂ 박막의 Cr층이 절합유리와 Fe-Hf-N 박막과의 화학적 반응에 의해 Fe-Hf-N 박막의 산화를 효과적으로 억제하여, Fe-Hf-N/SiO₂ 박막보다 Fe-Hf-N/Cr/SiO₂ 박막의 연장성 특성 열화가 적게 나타난 것으로 판명된다.

IV. 결 론

포화지화값 17.2 kG, 보자력 0.5 Oe, 10 MHz에서의 유효투사율 1460을 갖는 Fe-Hf-N/SiO₂ 및 Fe-Hf-N/Cr/SiO₂ 2종의 박막을 이용하여, 절합유리와의 반응에 따른 박막의 연장성 특성과 미세구조, 조성동등 및 결정상 변화를 분석한 결과는 다음과 같다.
로 연지기 특성이 급격히 열화되었다. 이는 접합유리와 화학적 반응에 의해 Fe-Hf-N 박막이 HfO₂, Fe₂O₃ 등으로 변환되기 때문인 것으로 나타났다.

3. Fe-Hf-N/Cr/SiO₂ 박막과 접합유리와의 반응 시에는 Fe-Hf-N/SiO₂ 박막에서의 경우보다 연지기 특성이 열화가 덜 일어나, 600°C에서 포화자화점 13.5 kG, 보자력 4 Oe, 유효공작률 700 정도를 유지하였다. 이는 Fe-Hf-N/Cr/SiO₂ 박막의 Cr 중이 접합유리와 Fe-Hf-N 박막과의 화학적 반응을 억제하여 Fe-Hf-N 박막의 산화가 덜 일어나, 일부에서는 HfO₂가 생성되며 나머지는 원래의 α-Fe 상을 유지하기 때문으로 나타났다.

참고 문헌

Soft Magnetic Properties of Fe-Hf-N Films Reacted with Bonding Glass

Kyung-Nam Kim and Byong-Ho Kim
Department of Materials Science and Engineering, Korea University, Seoul 136-701, Korea

Hae June Je*
Materials Science and Technology Division, KIST, Seoul 136-791, Korea

(Received 15 November 2002, in final form 13 January 2003)

The purpose of this study is to investigate the effect of chemical reaction with a bonding glass on physical and magnetic properties of Fe-Hf-N/SiO₂ and Fe-Hf-N/Cr/SiO₂ thin films. When the Fe-Hf-N/SiO₂ films were reacted with the bonding glass, the soft magnetic properties of them were extremely degraded. At 600 °C, the saturation magnetization of the reacted film decreased to 1 kG, and its coercivity increased to 27 Oe, and its effective permeability decreased to 70. It was found that the degradation of soft magnetic properties of the Fe-Hf-N/SiO₂ films reacted with the bonding glass were attributed to the oxidation of the Fe-Hf-N layers to HfO₂ and Fe₂O₃. The soft magnetic properties of the Fe-Hf-N/Cr/SiO₂ films reacted with the bonding glass were degraded less than those of Fe-Hf-N/SiO₂ films. At 600 °C, the saturation magnetization of the reacted film decreased to 13.5 kG, and its coercivity increased to 4 Oe, and its effective permeability decreased to 700. It was found that the Cr layer suppressed the oxidation of the Fe-Hf-N layers during the chemical reaction between the Fe-Hf-N layer and bonding glass.

Key words: Fe-Hf-N film, bonding glass, chemical reaction, Cr layer