다중강전자 상태를 가진 육방정체물질의 전자구조 계산

박기택 *

국립대학교 나노전자물리학과, 서울시 성북구 정릉동 861-1, 136-702
(2007년 8월 10일 합유, 2007년 8월 21일 최종수정본 합유)

다중강전자 상태의 YMnO₃, ScMnO₃의 전자구조와 자기구조를 국소스핀밀도근사(LSDA)를 이용하여 계산하였다. 강자성 상태 이며 강유전 상태의 전자구조는 육방정체 구조로 인하여 Mn 3d 에너지단계가 분리되어 나타났다. 이러한 에너지 단계의 같은 Y, Sc 이온의 반전으로 인하여 YMnO₃, ScMnO₃는 반강자성 강유전적 성질을 가진다 다중강전자 구조를 가지고 있음을 보았다. 또한 유전성 계산을 통하여 반강자성, 강유전 상태가 가장 안정된 실험과 일치하였다.

주제어: 제1원리계산, 다중강전자, 총에너지

I. 서 론

회토류 망간산화물(RMnO₃) 물질은 여러 물리적 성질을 보여주고 있어 최근 많은 연구가 이루어지고 있다. 그 중 큰 이온 반전을 가진 RMnO₃(Μ = La, Ba, Sr)는 orthorhombic perovskite 구조를 가지고 있고 거대자기단층 효과를 보인다. 작은 이온 반전을 가진 RMnO₃(Μ = Y, Sc)은 perovskite 구조가 불안정하여 육방구조(Hexagonal symmetry)를 가지게 된다. 이러한 물질은 강유전적(ferroelectric) 성질을 가지는 것으로 알려져 있다. 육방정체형의 RMnO₃는 1963년 Bertaut, Forrat, Fang이 발견하였다[1]. 이후 이러한 강유전적 성질과 자기적 성질은 최근 들어 많은 연구가 이루어지고 있다. 다중강전자(multiparticritical) 성질을 가지는 이러한 물질은 대부분 소자 등에 입체성의 가능성이 많아 새로운 첨단물질로 연구되고 있다[2].

그러나 이러한 연구는 처음 시각단계로, 이러한 물질의 기본 전자구조, 자기적 성질, 강유전적 성질 등에 대한 이론적 연구는 많이 이루어져 있지 않다. 또한 이에까지 강유전체(PbTiO₃, BaTiO₃ 등)에 대한 이론 연구와 자성 물질을 포함하는 강자체에 대한 연구는 별개로 이루어져 새로운 이론 연구를 보완하고 있다[3].

이 논문에서는 국소스핀밀도 근사(LSDA)를 사용한 제1원리 계산[4]을 통하여 육방구조의 RMnO₃(Μ = Y, Sc)의 자기구조와 자기구조를 밝히고, 강유전상태의 총에너지 계산을 통하여 강유전 상태의 안정성을 연구하였다. 이러한 계산은 RMnO₃(Μ = Y, Sc)의 기본적 자기적, 전기적 성질을 밝히는 데 도움이 되고 새로운 다중강전자 상태의 물질을 개발하는

II. 결정구조와 연구방법

1. 결정구조

YMnO₃는 육방정체 구조(P6₃cm)를 가지고 있으며 각각의 원자는 a = 6.1553 Å, c = 11.4026 Å이다[5]. 각 Mn 원자는 이중 피라미드 구조를 가진 다섯 개의 산소 원자에 의해 둘러싸여 있다. 현재의 O(3) 원자와 두개의 O(4) 원자는 같은

Fig. 1. Crystal structure of RMnO₃.
은 평면 내에 삼각형을 이루고 있고, O(1), O(2) 원자는 희
라미드 정점에 위치하고 있다. 정점의 산소 원자(O(1), O(2))
가 같은 면의 원자(O(3), O(4))보다 멀리 떨어져 있는 구
조를 가지고 있다(Fig. 1). Y^{13} 이온 반경(0.95 Å)은 La^{3+}
이온 반경(1.14 Å)보다 작기 때문에 육방정계의 구조를 가
지하게 된다.

이것의 자성 상태는 아직 잘 알려지지 않고 있으나
YMnO₃의 경우 Mn 원자 끼리 반감각성 상태와 유사한 자
성 상태임 것으로 추정 된다. 이 물질의 반감각성 전이 온도
T_N = 70 K 근방으로 알려져 있으며, 강연전 상태로의 전이 온
도는 T_C = 913 K 정도이다.

ScMnO₃도 YMnO₃과 같은 육방정계 구조(P6_3mc)를 가지
고 있으며 겔리상수는 \(a = 5.8337 \) Å, \(c = 11.1686 \) Å이다[5].
Sc^{3+} 이온 반경(0.78 Å)은 La^{3+} 이온 반경(1.14 Å)보다 작
기 때문에 육방정계의 구조를 가지게 되며, Y^{13} 이온 반경보
다 더 작기 때문에 작은 겔리상수를 가지고 있게 되며 위로
만 구조로 인해 강연전 성질을 가지고 있다.

이것의 자성 상태는 아직 잘 알려지지 않고 있으나
ScMnO₃의 경우 Mn 원자 끼리 반감각성 상태와 유사한 자
성 상태임 것으로 추정 된다. 이 물질의 반감각성 전이 온도
T_N = 129 K 근방으로 YMnO₃(70 K)보다 높으며, 강연전 상태
로의 전이 온도는 T_C = 1000 K 이상으로 알려져 있다.

2. 연구방법

전자구조의 계산은 범 밀도 함수(density functional
그리고 계산에서는 Hedin-Lundqvist 형의 국소스판밀도
근사(local spin density approximation)를 이용하였다.

FLAPW 계산에서 Muffin-tin 반경은 각 원자에 따른 반경,
거저 있는 전자수, 원자의 종류를 고려하여 각각 Y, Sc:
2.7 a.u., Mn: 2.0 a.u., O: 1.45 a.u.으로 설정하였다. 이 때의
기리ducible Brillouin Zone(IBZ) 내의 k-points의 수를 20개
로 동일하게 설정하여 계산을 수행하였다. 기리합수는 각운동
량은 8까지 전개하고, 평면파의 기리합수의 수는 원자당
약 60개까지 전개하였다.

위 방법으로 강연전 상태(HE), 상유전 상태(PE)의 RMnO₃의
전자구조 계산을 하였다. 여기서 각각 강자성상태(TM), 반감
자성상태(AFM)의 총에너지 계산을 하여 안정성을 비교하였다.

III. 결과 및 논의

Fig. 2은 LSDA 근사를 이용하고 FLAPW 방법으로 계산한
강유전체(HE)이며 강자성 상태(TM)의 YMnO₃의 Muffin-tin
구내의 부분 상태밀도(partial density of states, PDOS)와
총상태밀도(Total density of states)를 보여준다. 산소 원자에
2p 에너지향대는 Mn 원자의 3d 에너지상보다 4 eV 정도
널어 존재하고 있다. Mn 원자는 육방정계의 결정구조로 인
하여 3d 에너지상은 분리되어 있다. Mn원자의 3d 3d 전자는 소수 스핀 빔을 채우게 되고, 1개
의 소수 소실 빔은 비어 있다. 그래서 이러한 육방정계 대칭
으로 인하여 에너지 빔을 가지게 된다. 이 에너지 빔은
LSDA 계산에서는 아주 작게 나타난다 (<0.1 eV). 또한 에너
지 경계 육방정계 구조의 YMnO₃의 안정성을 보여주고, 강
유전적 성질을 떠나는 중요한 이유가 된다.

일반적으로 대표적인 강유전체 PbTiO₃ 같은 경우 Pb-O
사이의 강한 결합이 강연전 상태의 안정성을 보이는 것에 비
해 YMnO₃는 Y-O 사이의 결합이 강한 결합을 보여준다. 이러한 결합성에 대해서는 박울
이온 반경 \(Y^{13} \)으로 인한 육방정계의 구조적 안정성과 에너지 빔으
로 인하여 이 물질은 강유전적 성질과 자기적 성질을 가지
게 된다.

Table 1는 YMnO₃의 화학식 당 총에너지 계산 결과를 보
여 준다. 강자성 상태(AFM)이며 강유전 상태(TM)가 강자
성 상태(TM)보다 약 30 meV를 차지한다. 이 계산에서 반강자성 상태는 실험에서 나타나는 반강자성 상태
(non-collinear spin state)와는 조금 차이가 있다[7-9]. 아직
실험에서 확립된 반강자성 상태가 없이 일반적인 반강자성 상태(collinear spin state)를 계산하였다. 그러므로 YMnO₃는 반강자성 상태가 안정할 것이라는 보여주었다. 상유전 상태(PE)의 에너지는 강유전 상태보다 높은 에너지를 보이지만, 이 용접이 강유전 상태의 안정성을 이론적으로 보여 준다.

앞으로 Tc 이상의 온도에서 상유전 상태를 보이는 구조의 연구와 자기적 스핀 구조, 온도에 따른 갑자 상수 변화 등의 정확한 실험적 사실이 요구되었는다.

Fig. 3은 LSDA 근사의 이용하라 FLAPW 방법에 의해 계산한 강유전 상태(PE) 강자성 상태(PE)의 ScMnO₃의 Muffin-tin 구내의 부분 상태밀도(PDOS)를 보여준다. 이 결과 YMnO₃와 같이 Mn 원자의 유방정계의 결정구조에 인하여 3d 띠는 분리되어 된다. Mn원자는 +3가를 가지게 되어 47개의 3d 전자는 소수 스핀 띠를 채우게 되고, 1개의 소수 스핀 띠는 비게 된다. 그래서 이러한 유방정계 대칭으로 인하여 3d 에너지 띠 분리가 나타난다. 그러나, Y 이온보다 작은

<table>
<thead>
<tr>
<th>상태</th>
<th>YMnO₃ (meV)</th>
<th>ScMnO₃ (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM, FE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AFM, FE</td>
<td>-22</td>
<td>-28</td>
</tr>
<tr>
<td>FM, PE</td>
<td>30</td>
<td>108</td>
</tr>
<tr>
<td>AFM, PE</td>
<td>73</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 1. Calculated total energies with ferromagnetic (FM), antiferromagnetic (AFM), ferroelectric (FE), paraelectric (PE) states.

Sc 이온 반정으로 인해 Mn-O 사이의 거리가 가까워서 더 큰 Mn 에너지 띠 띠를 보여 YMnO₃ 하림 작은 에너지 띠 띠(<0.1 eV)은 보여주지 못하고 있다. LSDA 계산에서는 일반적으로 에너지 띠는 각부 나타나거나 나타나지 못하는 경우가 있다. LSDA 계산의 경우, 좌오한 Mn, O 원자 사이의 결합으로 에너지 띠를 나타내지 못하고 있다. 에너지 띠는 유방정계 구조의 ScMnO₃의 안정성을 보여 주고, 강유전성 신호를 나타내는 중요한 이유가 되어 LSDA 계산에서는 3d 에너지 분리로 인하여 에너지가 낮아져 안정적인 상태를 나타낸다.

ScMnO₃에서도 Sc-O 사이의 결합은 이온 결합이 강한 성향을 보여준다. 이러한 이온결합성에도 불구하고 YMnO₃와 비슷하게 작은 이온 반정(Sc)으로 인하여 유방정계의 구조 적 안정성과 에너지 띠로 인하여 이 물질은 강유전성 성질과 자기적 성질을 가지게 된다.

Table 1은 단위 ScMnO₃ 화학적 동의 총에너지 계산 결과를 보여 준다. 반강자성 상태(AFM)이며 강유전 상태(PE)가 강자성 상태보다 낮은 에너지(−28 meV)를 보여 주었다. 이 계산에서도 반강자성 상태는 실험에서 나타내는 반강자성 상태와는 조급 차이가 있다. 이와 실험에서 확립된 반강자성 상태가 없이 일반적인 collinear spin 반강자성 상태를 계산 하였다. 상유전 상태(PE)의 에너지는 강유전적 상태보다 높 은 에너지(+108 meV)를 보여주어, 이 물질 또한 강유전적 안정성을 이론적으로 보여 주었다.

IV. 결 론

유방정계 구조를 가진 다중전자 물질인 YMnO₃, ScMnO₃의 전자구조와 자기구조를 국소스핀밀도기법(LSDA)을 이용하여 계산하였다. 자성상태의 강유전적 상태의 전자구조는 유방정계 구조로 인하여 3d 에너지 띠가 분리하여 에너지 띠를 나타내었다. 이러한 에너지 띠 및 작은 Y이온의 반정으로 인하여 YMnO₃는 반강자성 강유전성 신호를 가지는 다중전자 구조를 가지게 있음을 보여주었다. 반면, ScMnO₃는 Mn-O 사이의 거리가 가깝고 LSDA 계산에서 좌오한 Mn-O 결합으로 에너지 띠를 보여 주지 못하였다. 그러나 총에너지 계산에서 다중전자 상태(반강자성, 강유 전 상태)가 가장 안정성을 보일 수 있었다. 총에너지 계산에서 강유전적 상태의 에너지가 상유전 상태에 비해 약 100 meV 정도 낮은 에너지를 가지고 있었다.

참고문헌

The Electronic Structure Calculations for Hexagonal Multiferroic Materials

Keytaeck Park*
Department of Nano Electronic Physics, Kookmin University, Seoul 136-702, Korea

(Received 10 August 2007, Revised 21 August 2007)

We have studied electronic structures and magnetic properties of YMnO$_3$, ScMnO$_3$ with hexagonal structure using Full Potential Linearized Augmented Plane Wave (FLAPW) method based on LSDA method. LSDA calculation results show that multiferroic YMnO$_3$ shows energy gap due to hexagonal symmetry and magnetic interaction. Because of insulating gap and small Y ion, YMnO$_3$ shows magnetic and ferroelectric state. However, ScMnO$_3$ does not show the energy gap because of strong hybridization of Mn-O for LSDA calculation. We confirmed the stability of multiferroic state for YMnO$_3$ and ScMnO$_3$ using total energy calculations. The antiferromagnetic and ferroelectric states have the lowest energy about 100 meV.

Keywords: first principle calculation, multiferroic, total energy