초상성 코발트 페라이트 나노입자에 대한 자화 및 자기엔트로피 변화

안영규
건양대학교 나노바이오학과, 충남 논산시 내동 26번지, 320-711

최윤정*
건양대학교 안경광학과, 대전광역시 서구 가수원동 685, 302-718

(2008년 1월 15일 제출, 2008년 2월 1일 최종수정본 반영)

초상성 코발트 페라이트 나노입자를 제조하여 자화 및 자기엔트로피 변화를 조사하였다. 제조된 시료는 전형적인 임상 스펙트럼 구조를 띠고 있었다. 5 K와 300 K에서의 최대 자화치의 양이 상당한 상태에서의 최대 자화치보다 적은 값을 가졌다. 시료의 초상성적 가동는 M vs. H(T) 곡선의 경사에 의해 확인되었다. 역학적 이론을 바탕으로 자기엔트로피의 변화에 대한 온도 의존성을 도출한 결과, 온도가 높을수록 자기엔트로피의 변화는 더욱 커져 감소하는 것으로 나타났다.

주제어: 페라이트, 초상성, 자화, 자기엔트로피 변화

I. 서론

입자가 나노 크기로 감소하면 당어리 크기에서는 나타나지 않은 특이한 물리적, 화학적 현상이 관측되는 것은 이미 널리 알려져 있는 사실이다. 가장 대표적인 현상들로는 초상성, 화학적 현상과 나노입자 표면에서 나타나는 표면효과가 있다. 이러한 현상들은 나노입자 제조기술의 발달과 더불어 입자 크기를 어느 정도 제어할 수 있게 된 다음부터 더욱 활기를 띤게 되었다[1]. 특히 자기기록 매체, 전자 화소체, 질소, 중금속 폐수처리 등에 널리 이용되고 있는 산화물 페라이트나 노크로 제조하면 그 용도를 더욱 넓혀나갈 수 있다. 페라이트 입자의 크기를 나노 크기로 제조하여 약물과 혼합한 후, 인체 내에서 무해성과 안정성이 입증된 생물재료로 보고된다는 연구들도 있다[2]. 자석용수제로 제조하면 자석유체 scaling, 스피커 damper, 자석임크, 자기선태, 자기 광학소자, 발전기의 열교환기, 버팅안 등에도 이용할 수 있다[3].

본 연구에서는 이러한 용용 범위가 무궁무진한 산화물 페라이트 나노입자를 제조하여 이에 대한 자화의 특성과 이로부터 나타나는 자기엔트로피의 변화를 알아보기 위하여 코발트 페라이트 나노입자를 제조하여 자화를 측정한 후, M vs. H(T) 곡선을 통하여 초상성적 가동을 확인하고, 응력적 이론을 바탕으로 자기엔트로피의 변화에 대한 온도 의존성을 도출하였다.

II. 실험 방법

시료는 다음과 같은 방법으로 제조하였다. 출발물질로는 CoCl₂·6H₂O와 FeCl₃·6H₂O를 사용하였다. 용액은 이소오메탄, 메탄올, 탈수정제로는 Aerosol OT를 사용하였다. 용기에 용액으로는 탄산나트륨 0.2 M 수용액을 사용하였다. 코발트 페라이트 전구물질인 cobalt-iron hydroxide carbonate의 초미립 빔을 얻기 위한 방법은 코발트(II)와 철(III)이 녹아있는 에탄올 용액과 염기성 수용액의 양이 동일한 용액을 같은 부피비로 혼합, 교반하여 얻었다. 빔작성을 얻어, 중모 두께 분리와의 330℃에서 6시간 열처리를 하여 최종 물질을 제조하였다. 구조 해석을 위하여 X-선 회절 실험을 하였다. X-선 분석결과의 보고에 의하면 제조된 시료는 크기 7.9 mm, 각자상 8.40 A 인 전형적인 임상 스펙트럼 구조를 띠고 있었다. 자기적 특성을 평가하기 위하여 SQUID 자화를 측정기를 이용하여 자화 실험을 하였으며, 이에 기인한 최대 자가장은 50 kOe이고, 측정된 온도의 범위는 5~300 K이다.

III. 결과 및 고찰

Fig. 1에 5 K와 300 K에서의 자화곡선을 나타내었다. 시료는 50 kOe의 강한 자가장에서도 포화되지 않고 있다. 5 K에서의 전류자위치는 10.7 emu/g이며, 보자력의 14.3 Oe이다. 5 K와 300 K에서의 최대 자화치는 각각 24.3 emu/g와 17.2 emu/g으로 측정되었다. 50 kOe에서 측정된 이러한 최대 자화치는 같은 온도에서 측정된 당어리 상태의 시료에 대한 포화 자화치인

*Tel: (042) 600-6331, E-mail: cjchoi@konyang.ac.kr

-63-
Fig. 1. Magnetization curves of Co-ferrite nanoparticles measured at 5 and 300 K.

93.9 emu/g(5 K)과 80.8 emu/g(300 K)에 비하면 취한 작은 값이 있다[4]. Blaskov 등의 보고에 의하면 나노 크기에서의 이상한 자화학 감소는 입자의 크기가 작아지면서 발생하는 불완전한 결정학적 구조 및 표면 효과로 인한 스핀 기울이짐에 그 원인이다[5].

Fig. 1에서 알 수 있듯이 5 K에서 측정된 자화학전선에서의 자기이력함성이 나타나고 있다. 즉, 전유자화와 보자력은 모두 0이 아니다. 이는 5 K에서 입자가 자주성 상태에 있다는 것을 의미한다. 그러나 300 K에서는 자기이력함성이 나타나지 않는다. 즉, 300 K에서는 인원의 외부자장으로 인한 자기에너지에 비하여 입자의 영역자장 상대적으로 커서 열적 평형상태에 있다는 것을 의미한다. 이는 입자들이 300 K에서의 초자리성 상태에 있다는 것을 의미한다.

입자들의 이러한 초자리성적 기동은 상자리성 상태의 자화학

선에 대한 M vs. H/T 곡선의 경질로부터 확인할 수 있다[6]. 본 연구에서 제조된 시료가 초자리성적 기동을 보이고 있는지를 확인하기 위하여 120-300 K에 대한 M vs. H/T 곡선을 Fig. 2에 나타내었다. Fig. 2에서 알 수 있듯이 모든 곡선들이 잘 겹치고 있다. 이로부터 120 K 이상에서 입자는 초자리성적 기동을 하고 있음을 확인할 수 있다.

열역학 이론에서 피 한정기 H/T에 떨어지기 전반에 운도 T에서 일어나는 자기자체로의 변화(magnetic entropy change)는 다음과 같다.

$$
\Delta S_M(T,H) = \Delta S_M(T,H) - \Delta S_M(T,0) = \int_{H}^{H_T} \left(\frac{\partial S}{\partial H} \right)_T dH
$$

여기서, 탱스텔 관계식 중의 하나인

$$
\left(\frac{\partial S}{\partial H} \right)_T \left(\frac{\partial M}{\partial T} \right)_H
$$

을 이용하면 식 (1)은 다음과 같이 쓸 수 있다.

$$
\Delta S_M(T,H) = \int_{H}^{H_T} \left(\frac{\partial M}{\partial T} \right)_H dH
$$

이 식을 이용하면 자기자체로의 변화를 구할 수 있다. 즉, 흡광 불연속적인 자기장 및 운도 간격으로 측정된 동일자화 곡선과 식 (2)의 다음과 근사식 (3)을 이용하면 자기자체로의 변화를 근사적으로 계산할 수 있다.

$$
\Delta S_M(T,H) = \sum_{i}^{M} \frac{M_{i+1} - M_i}{T_{i+1} - T_i} \Delta H_i
$$

여기서 M_i와 M_{i+1}은 자기장 H_i 하에서 측정된 각각 운도 T_i와 T_{i+1}에서의 자화력이다.
Table I. Magnetic entropy change at different temperatures.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>135</th>
<th>160</th>
<th>185</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta S_m \times 10^{-4}$ (J/kg K)</td>
<td>-0.63</td>
<td>-0.91</td>
<td>-1.02</td>
<td>-1.21</td>
</tr>
</tbody>
</table>

Fig. 4. Temperature dependence of magnetic entropy change.

Fig. 3은 120〜300 K의 초상자성 상태에서 측정된 등온자화 곡선을 나타낸다. 여기서 언급된 저화 및 은도의 값은 (3)을 바탕으로 자기엔트로피의 변화를 계산하였고, 그 결과는 Table I와 Fig. 4에 나타내었다. Table I에서의 은도는 각 온도구간에 대한 평균온도이다. 결과에 의하면 측정한 은도의 범위(120〜300 K)에서는 은도가 높음수록 엔트로피의 감소가 큰 것으로 확인되었다.

IV. 결론

초상자성 폐라이트 나노입자의 저화 및 자기엔트로피 변화를 조사하기 위하여 마이크로 에이전트법으로 실험이 제조하였 다. 제조된 시료는 격자상수 8.40 A인 전형적인 입방 스피넬 구조를 따고 있었다. 5 K에서의 젊Ņ자화는 10.7 emu/g이며, 보자력은 14.3 Oe이며, 5 K와 300 K에서의 최대 자화는 각각 24.3 emu/g와 17.2 emu/g이었다. 이러한 값들은 같은 은도에서 측정된 다른 상태의 시료에 대한 포화자화인 93.9 emu/g (5 K)과 80.8 emu/g(300 K)에 비하면 훨씬 적다. 이러한 나 노 크리의 저화의 감소는 입자의 크기가 작아지면서 발생하는 불완전한 결정학적 구조 및 표면 효과로 인한 스피 니 기울어짐에 그 원인이 있는 것으로 해석될 수 있다. 시료의 초상자성적 기능은 M vs. H/T 곡선의 일치에 의해 확인되었 다. 측정한 은도의 범위에서 열역학적 이론에 의하여 계산된 자기엔트로피의 변화는 은도가 높음수록 더 크게 감소하는 것으로 나타났다.

감사의 글

이 논문은 2004년 정부(교육인재자원부)의 재정으로 한국 학술진흥재단의 지원을 받아 수행된 연구임(KRF-2004-002-C00079).

참고문헌

Magnetization and Magnetic Entropy Change in Superparamagnetic Co-Ferrite Nanoparticle

Yangkyu Ahn
*Department of Chemistry, Konyang University, Nonsan, Chungnam 320-711, Korea

Eun Jung Choi
*Department of Ophthalmic Optics, Konyang University, Daejeon 302-718, Korea

(Received 15 January 2008, in final form 1 February 2008)

In order to the magnetization and magnetic entropy change for superparamagnetic ferrite nanoparticles, ultrafine cobalt ferrite particles were synthesized using a microemulsion method. The peak of X-ray diffraction pattern corresponds to a cubic spinel structure with the lattice constant 8.40 Å. The average particle size, determined from X-ray diffraction line-broadening using Scherrer's, is 7.9 nm. The maximal magnetizations measured at 5 and 300 K are 24.3 emu/g and 17.2 emu/g, respectively. Superparamagnetic behavior of the sample is confirmed by the coincidence of the M vs. H/T plots at various temperatures. According to the thermodynamic theory, magnetic entropy change decreases with increasing temperature.

Keywords: ferrite, superparamagnetism, magnetization, magnetic entropy change