Hygroscopic Characteristic of Hydrothermal Reacted Panels Using Porous Materials

Yong Sik Chu†, Choon Woo Kwon, Hoon Song, and Jong Kyu Lee
Ceramic & Building Materials Division, Korea Institute of Ceramic Engineering & Technology, Seoul 153-801, Korea
(Received October 6, 2008; Revised November 19, 2008; Accepted November 20, 2008)

ABSTRACT

Diatomite, bentonite and zeolite were used as porous materials for fabricating hygroscopic panels. Moisture adsorption and desorption of porous materials were investigated and hydrothermal method was applied to fabricate panels. Cheolwon diatomite and Pohang zeolite showed excellent characteristics of moisture adsorption and desorption. These characteristics were caused by higher surface area and pore volume of porous materials. Correlation coefficient between surface area and moisture adsorption content of porous materials was 0.93. Moisture adsorption contents were influenced by surface area and pore volume of panels, and surface area more affected on moisture adsorption. Correlation coefficient between surface area and moisture adsorption content of panels was 0.86. Moisture adsorption content of panel with 10% Pohang zeolite was 180 g/m², and that of 10% Cheolwon diatomite was 170 g/m². Moisture desorption content of panel with 10% Pohang zeolite was 105 g/m². Moisture adsorption contents of panel with porous materials were higher than that of panel without porous materials.

Key words: Moisture adsorption, Porous materials, Hydrothermal method, Panel

1. 서 론

다수의 현대인은 하루 시간의 80~90% 이상을 실내에서 생활하고 있으며, 이에 따라 휴발성 유기화합물 및 실내 온습도 등의 중요성이 대두되고 있다. 특히 유기 내장재를 사용할 경우, 화재 취약성 및 환기성 유기활

모의 발생 정도가 더욱 심해져 인체에 유해한 영향을 미

칠 수 있다.3,4

주거환경에서의 적당한 환경 습도는 40~70% 범위로, 이보다 높으면 곰팡이나 진드기의 번식에 따라 이들의 배

설물이나 유해 미생물에 의해 착식, 이로피성 피부염 등

과 같은 알레르기성 질환이 증가하게 된다.5 이보다 낮은

경우에는 갑기 등의 바이러스 증식, 질병의 속적으로

인한 질병기기의 오도작, 발화 및 미생물과는 제품 등의

염화가 발생하게 된다. 그러므로 적당한 습도를 유지하기

위해 제품이나 가습기 사용되고 있으며, 이 경우 에너

지 소비가 크고 장기간 사용시 제품이 가습기 내부에 금

광이나 진드기 또는 각종 세균이 번식하게 되며, 결국에

는 이를 세균들이 환경을 오염시키며 인체 건강을 위협하

게 된다. 따라서 기기의 도움 없이도 실내 환경에 적합한

습도를 유지할 수 있는 조습패널의 개발이 필요하다. 조

습패널은 패널 자체가 갖는 유의의 기공 특성으로 습도

조절뿐만 아니라 통합, VOC 제거 등 기능성을 제품의

역할에도 동시에 수행할 수 있는 장점을 나타낸다.3,4 이

러한 문제점을 해결하기 위해 신전국에서는 고온소성

패널, 수열합성 패널 및 도료 등 다양한 형태의 제품을

개발·판매하고 있으며, 이중 소성 제품은 조습기능은 뛰

어나지만 제조 온도가 1100°C 이상으로 높으며, 도료 제

품은 기능성이 떨어지는 단점이 있다.5,6) 그러나 수열합

성 제품은 100~200°C의 자온에서 제조되어 기체성을 확

보할 수 있으며, 수열합성 반응으로 생성되는 토베모라이

트 결정은 조습특성을 보완할 수 있다. 토베모라이트 결

정은 Fig. 1에서의 산화 Ca(OH)₃의 산물이 SiO₂ 4면체의 연속

적 구조로서, 실리카텐 온도 증가 동안의 공동 부분에 Ca²⁺

이온이나, H₂O가 위치한다. Ca(OH)ₓ는 OH⁻ 이온이 데계

육방성 수증화하며, 그 물 사이에 Ca²⁺ 이온이 들어가기

데, OH⁻ 이온이 교대로 점하는 반은 결함이 약하고 백색

하기 쉽다.8) 이때 증간 두께가 및 mm단위에 따라

1.1 nm(1Å) 혹은 1.4 nm(14Å)의 토베모라이트라고 명명

한다. 이 증간 부분은 nano size의 미세 기공으로 작용하

E-mail: yscchu@kictc.re.kr
Tel: +82-2-3282-2423 Fax: +82-2-3282-2430
여, 수분의 흡습 및 방산에 기여할 수 있는 것으로 보고되고 있다. ③

2. 실험 방법

2.1. 출발 원료 분석
본 연구에서는 수열화성을 위해 SiO2 source로 규성석을,
CaO source로 소석회와 백시멘트를 사용하였으며, 이들의
화학적 성과를 Table 1에 나타내었다. 또한 다공성 원료
로 규조도, 베토나이트, 채울라이트 등을 사용하였으며, 규
조도는 천원 규조도(Gray,G), Pink(P) color) 2종, 중국산
수입 규조도(White(W), Pink(P) color) 2종 등 총 4종은,
베토나이트는 포항 및 화순 지역의 베토나이트 2종, 채울
라이트는 경주 및 포항 채울라이트 2종을 사용하였다.
이
들 다공성 원료는 화학적 성질, 주사전전자현황을 사용한
비색구조 분석(SM-300, TopCon Co., Japan), BET
(Model TriStar 3000 V6.02A, Micromeritics Co., USA)
를 이용한 기관과 비표면적 특성 및 분말 자체의 흡방습
특성을 실험·평가하였다. 분말의 흡방습 특성은 분말 시
로 500g을 온도 23℃, 상대 습도 45% 조건에서 환경에
있을 때까지 유지하여 무게(m0)를 측정하고, 무게 측정 후
상대 습도를 70%로 상승시켜 24시간 동안 유지하여 무
게(m1)를 측정하였다. 이후 상대 습도를 45%로 하향 조정
하여 24시간 동안 유지한 후 무게(m2)를 측정하였다.
이
때 분말에 흡습된 양(m1-m0)을 분말의 수분 흡습량으로,
방산된 양(m2-m1)을 분말의 방산량으로 계산하였다.

2.2. 패널 제조 및 평가
다공성 원료를 계획한 제조 섬의 소석회 및 백시멘트를 사
용하여, CaO/SiO2 비율 0.5, 0.7, 0.9 및 1.1로 패널을 제
조하였으며, 다공성 원료는 CaO/SiO2 비 0.7 조건에서
10%, 20%, 30% 외할 정가하였다. 득패널 제조 후 위
해 사용한 다공성 원료는 '3.1 다공성 원료의 분석'에서
와 같이 원료 자체의 수분 흡방습능이 우수한 천원 규조
도, 포항 베토나이트 및 포항 채울라이트 등을 선정하였
다. 배합이 원료된 혼합원료는 10% (종합수/종합원료)의 혼
합수와 혼합 후 기압 성형하였다. 가압은 100 kgf/cm2로 1
분 동안 가압한 후 방열하여 수열화성(180~7시간) 하였

| Table 1. Chemical Composition of Starting Materials (unit : wt%) |
|----------------------|----------------------|----------------------|
| Materials | SiO2 | Al2O3 | Fe2O3 | CaO | K2O | Na2O | LOI |
| Quartz | 93.80 | 3.08 | 1.33 | 0.06 | 0.76 | 0.08 | - |
| Slaked lime | 2.12 | 0.77 | 0.34 | 69.50| 0.11 | 0.21 | 26.90|
| White cement | 22.80 | 6.16 | 0.26 | 68.42| 0.21 | - | 0.10 |

| Table 2. Chemical Composition of Porous Materials (unit : wt%) |
|----------------------|----------------------|----------------------|
| Materials | SiO2 | Al2O3 | Fe2O3 | CaO | K2O | Na2O | LOI |
| Diatomite | | | | | | | |
| CW-G | 66.60 | 15.40 | 3.64 | 0.36 | 2.15 | 0.78 | 9.53 |
| CW-P | 86.70 | 6.11 | 2.07 | 0.09 | 1.12 | 0.17 | 3.17 |
| CH-W | 88.01 | 4.20 | 1.37 | 0.23 | 1.85 | 1.25 | 0.22 |
| CH-P | 91.15 | 2.96 | 1.48 | 0.25 | 0.70 | 0.40 | 0.24 |

Bentonite							
Hwasoon	75.00	14.80	5.15	0.03	4.94	0.23	3.14
Pohang	60.60	16.30	5.24	2.62	1.99	1.71	8.00

Zeolite							
Kyungjoo	70.30	13.60	1.29	2.51	3.17	1.93	5.76
Pohang	63.20	15.70	3.72	2.54	2.15	2.18	7.64

-CW-G:Cheolwon Gray, CW-P:Cheolwon Pink, CH-W:China White, CH-P:China Pink
우리, 수열합성 후 폐널의 두께는 8.0±0.5 mm이었다. 또한 수열합성이 완료된 폐널의 수분 흡방송 및 기공 특성 을 분석하였다.
수분 흡방송을 측정하기 위해, 폐널을 23℃±45% 조건 에서 항양이 될 때까지 안정화 시킨 후 무게(m₀)를 측정 하였다. 이후 상대습도로 70% 상승시켜 24시간 동안 유 지하여 무게(mₐ)를 측정하였다. 24시간이 경과된 시점에 서 상대습도를 다시 45% 낮추고 추가로 24시간(총 48시간) 동안 유지하였다. 총 48시간이 종료된 시점에서 무게(mₐ)를 측정하여 기록하였다. 최초 24시간을 흡수과정, 이후 24시간을 방수과정으로 하며, 흡수가 및 방수량은 g/m²를 기준으로 환산·계산하였다. 또한 폐널의 기공 및 비표면적 특성을 평가하기 위해 BET (Model TriStar 3000 V6.02A, Micromeritics Co., USA)를 사용하였다.

3. 결과 및 고찰

3.1. 다공성 원료의 분석

규조토, 벤토나이트 및 제올라이트 등의 다공성 원료에 대한 흡착분석 결과를 Table 2에 나타내었다. 규조토의 주 성분인 SiO₂ 함량은 66.60~91.15%이었으며, 강화강량은 0.22~9.53%이었다. 화단 및 포장 벤토나이트의 SiO₂ 함량은 각각 75.0%, 60.6%이었으며, Al₂O₃ 함량은 14.8% 및 16.3%이었다. 제올라이트의 SiO₂ 함량은 70.3% 및 63.2%, Al₂O₃ 함량은 13.6% 및 15.73%이었다.
다공성 원료의 미세구조 관찰결과를 Fig. 2에 나타내었다. 중국 규조토는 전형적인 규조의 형태를 유지하였으나, 국내 철원 규조토는 규조의 형태를 관찰할 수 없는 변질 형태였다. 이는 철원 규조토의 경우, 일부 규조가 포함되어 있으나, 규조 자체의 형태가 구조가 대부분 왜곡·변질된 상태로 존재하기 때문이다. 또한 벤토나이트는 입 자 표면이 만곡 펴집(彎曲 現狀)을 이루고 있었으며, 또한 많은 기공도 관찰할 수 있었다. 그러나 화순 벤토나이 트는 각기 진 입자 형태 및 표면의 매끄러운 상태로 관찰되었다. 특히 50,000배율로 관찰한 주석전자현미경 사진에서도 기공이 관찰되지 않는 특성을 나타내었다.

BET을 사용한 다공성 분말의 비표면적 및 기공특성은 Table 3에 나타내었다. 철원 규조토는 표면적이 59 m²/g(G) 및 68 m²/g(P)이었으며, 중국 규조토의 표면적이 6 m²/g이었다. 포항 벤토나이트는 55 m²/g의 표면적이 나타내었으나, 화순 벤토나이트는 6 m²/g으로 매우 낮은 특성을 나타내었다. 이는 Fig. 2에서와 같이 벤토나이트의 경우, 표면이 매끄럽고, 기공이 적기 때문으로 판단되었다.
다공성 원료의 흡수량은 최소 3.6%, 최대 33.7%이었으며, 방수량은 최소 3.1%, 최대 32.6%를 나타내었다. 포항 제올라이트의 경우 흡수량 및 방수량이 30%를 상회하였으며, 철원 규조토는 24.4%(P), 28.2%(G)의 흡수량 및 15.8%(P), 25.0%(G)의 방수량을 나타내었다. 화순 벤토나 이트의 흡수량은 3.6%, 방수량은 3.1%로 매우 낮은 값을 나타내었다. 다공성 원료의 흡수 및 방수 특성과 pore vol. 과의 상관관계계수(R)는 0.73 및 0.57를 나타내었으며, 비 표면적과의 상관관계계수(R)는 0.93 및 0.83 이었다. 즉 다공성 원료의 흡수량 특성은 원료의 pore vol. 보다는 비 표면적이 좀 더 많은 영향을 주고 있음을 확인할 수 있 었다. 즉 수분은 다공성 원료의 기공을 채울 뿐만 아니라 표면에서도 다량 흡착되어, 수분의 흡착량을 증가시키는 것 으로 판단되었다.
3.2. 패널의 특성

다공성 원료를 첨가하지 않고 C/S 비를 변화시켜 제조한 패널의 XRD Pattern을 Fig. 3(a)에 나타내었다. C/S 비가 0.5에서 1.1로 증가함에 따라 quartz 피크의 intensity는 감소하였다. 특히 C/S 비가 0.5에서 0.9로 증가함에 따라 토템모라이트 결정 및 Ca(OH)₂ 피크는 서서히 증가하는 형태를 나타내었다. C/S 비에 따른 quartz의 intensity는 C/S 비 0.5에서 2,750, 0.7에서 2,042, 0.9에서 1,257 및 1.1에서 945로 감소하였다. 이는 원료 배합과정에서 C/S 비의 증가에 따라 규석 투입부가 감소함에 따라 자연석운 집계도가 높아지며, 또한 배합된 규석이 CaO 원료(석회, 백서면석)와 반응하여 토템모라이트 결정 또는 결정로 생성되고 있음을 의미하는 것이다. 토템모라이트 결정의 intensity는 C/S 비 0.5에서 317, 0.7에서 352, 0.9에서 415 및 1.1에서 315이었으며, 이는 C/S 비가 0.9 조건에서 토템모라이트 결정 생성이 가장 양호한 상태임을 나타내는 것이다. 특히 C/S 비가 1.1로 증가함에 따라 토템모라이트 결정의 intensity가 감소하는 것은 C/S비가 증가함에 따라 생성하는 비정질의 C-S-H gel 때문에 추측되어왔다. 이에 따라 결정 생성량의 상대적 비교값인 Tbermanite/Quartz의 intensity ratio(%) 또한 0.9 이상에서 는 증가하지 않는 경향을 나타내었다.

그리고 Fig. 3(b)는 C/S 비를 0.7로 고정하고, 다공성 원료를 사용하지 않은 패널과 첨성 규조트를 10% 첨가한 패널의 XRD patterns이다. 다공성 원료를 사용하지 않은 패널(C/S 0.7)보다는 규조트를 첨가한 패널(Diatomite (P) 10%)의 토템모라이트 결정 peak가 좀 더 성장하였음을 확인할 수 있었다. 이는 규석보다 반응성이 우수한 다공성 원료의 투입에 따라 토템모라이트 결정이 좀 더 용이하게 이루어져 있고 있기 때문으로 판단되었다. 이의 벤트나이트 및 재움라이트 등의 다공성 원료를 사용한 패널에서도 유사한 XRD patterns을 나타내었다. 일반적으로 석회, 사암류, 규석 등을 사용하여 수열적 복용을 진행할 경우, 토템모라이트 생성을 위해 복용에 참여한 규석원료는 약 50% 수준이며, 나머지 50%는 반응에 참여하지 않고 미반응 상태로 남아있게 된다. 따라서 비표면적이 넓고, 활성이 우수한 다공성 원료를 적정량 첨가함

| Table 3. Specific Surface Area and Pore Vol. of Porous Materials |
|-------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Classification | Diatomite | Bentonite | Zeolite |
| Specific surface area (m²/g) | CW-G 59 | H 6 | 57 | 0.11 |
| | CW-P 68 | P 55 | 50 | 0.08 |
| | CH-W 6 | P 0.12 | 0.11 | 0.08 |
| | CH-P 0.03 | K 0.12 | 0.11 | 0.08 |
| Pore Vol. (cm³/g) | 0.21 | 0.22 | 0.02 | 0.03 |

Table 4. Moisture Adsorption and Desorption of Porous materials

<table>
<thead>
<tr>
<th>Materials</th>
<th>Moisture Adsorption (%)</th>
<th>Moisture Desorption (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diatomite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CW-P</td>
<td>24.4</td>
<td>15.8</td>
</tr>
<tr>
<td>CW-G</td>
<td>28.2</td>
<td>25.0</td>
</tr>
<tr>
<td>CH-W</td>
<td>10.1</td>
<td>7.9</td>
</tr>
<tr>
<td>CH-P</td>
<td>9.5</td>
<td>7.3</td>
</tr>
<tr>
<td>Bentonite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pohang</td>
<td>26.8</td>
<td>26.4</td>
</tr>
<tr>
<td>Hwasoon</td>
<td>3.6</td>
<td>3.1</td>
</tr>
<tr>
<td>Zeolite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pohang</td>
<td>33.7</td>
<td>32.6</td>
</tr>
<tr>
<td>Kyungjoo</td>
<td>26.2</td>
<td>26.0</td>
</tr>
</tbody>
</table>
Fig. 4. Moisture adsorption and desorption of panels with porous materials.
Table 5. Specific Surface Area and Pore Characteristics of Panels

<table>
<thead>
<tr>
<th>Classification</th>
<th>C/S=0.7</th>
<th>Diatomite-CW (P)</th>
<th>Bentonite-Pohang</th>
<th>Zeolite-Pohang</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10% 20% 30%</td>
<td>10% 20% 30%</td>
<td>10% 20% 30%</td>
<td>10% 20% 30%</td>
</tr>
<tr>
<td>Specific surface area (m²/g)</td>
<td>8 29 29</td>
<td>17</td>
<td>28 28 26</td>
<td>30 24 24</td>
</tr>
<tr>
<td>Pore Vol. (cm³/g)</td>
<td>0.06 0.11 0.12</td>
<td>0.06</td>
<td>0.13 0.12 0.11</td>
<td>0.14 0.10 0.09</td>
</tr>
</tbody>
</table>

Fig. 5. Correlation between moisture adsorption/desorption and pore vol./surface area.

더한 규조트(P)는 10% 첨가량 조건에서 비표면적이 29 m²/g, 기공 부피 0.11 cm³/g이었으나, 30%에서는 이보다 감소하였다. 포항 벤토나이트는 첨가량 변화에 따라 큰 차이가 나타나지 않았으나, 비표면적이 미리하게 감소하였다. 즉 다공성 원료를 첨가한 채널의 비표면적 및 기공 부피는 첨가하지 않은 채널보다 높았으며, 다공성 원료 첨가한 채널에서는 첨가량 증가에 따라서 비표면적이 기공 부피가 약간씩 감소하는 특징을 나타내었다. 다공성 원료 첨가 체널에서도 첨가량 증가에 따라 감소하는 비표면적이 기공 부피는 최종적으로 수분의 흡습 및 방습 능력을 소폭 낮춘 것으로 판단되었다. 이는 다공성 원료의 첨가량 증가에 따라 트페모라이트 결정성 성에 기여한 후 미관능 상태로 남아있는 다공성 원료의 증가와 이에 따른 채널에서의 상대적인 토베모라이트 함량 감소로 이루어진다.

Fig. 4의 수분 흡방습 특성과 Table 5의 기공부피 및 비 표면적의 상관관계를 비교하였을 때, Fig. 5에 나타내었다. Fig. 5에서는 각 수분 흡방습 특성은 채널의 기공 및 비표면적의 성분 구분 상관성을 나타내고 있음을 확인한 수 있었으며, 채널의 비표면적과 수분의 흡습량과의 상관관계계수(τ)는 0.86, 방습량과의 상관관계계수는 0.74 이었다. 또한 채널의 기공부피와 흡방습량과의 상관관계

제45권 제12호(2008)
계수는 각각 0.70 및 0.50 수준이었다. 즉 다공성 원료들의 특성과 유사하게 패널의 수분 흡습력 특성 또한 패널의 비표면적이 크게 좌우되고 있음을 확인할 수 있었다.

4. 결 론

다공성 원료의 미세구조 중 중국 규저트는 규저의 형태를 유지하였으나, 일본 청진 규저트는 변질 형태를 나타내었다. 포항 밸트나이트는 표면이 만곡구조를 이루었으며, 또한 많은 기공도 관찰되었다. 제올라이트는 타원형 또는 구형의 입자들로 관찰되었으며, 이들 입자는 관상의 미립자로 구성되어 있었다. 천연 규저트, 포항 제올라이트 등의 원료의 비표면적이 컸으나, 중국 규저트 및 화순 밸트나이트 동은 비표면적이 낮은 특성이 있었다. 이에 따라 비표면적이 큰 청진 규저트 및 포항 제올라이트 등에서 수분의 흡습력 특성이 약화되었으며, 이때 비표면적과 수분의 흡습능과는 0.93의 상관성을 나타내었다. 수분의 흡습력 특성이 약화된 다공성 원료를 사용한 패널의 XRD patterns 관찰 결과, C/S 비 0.7 보다는 다공성 원료 10% 첨가 패널에서 토바로이트 피크 intensity가 증가하는 경향을 나타내었다. 이는 규격보다 반응성이 우수한 다공성 원료의 사용에 따른 현상을 판단되었다. 패널의 흡습력 특성은 C/S 비 0.7 조건에서 흡습량 약 80 g/m² 수준이었으며, 방습량은 약 40 g/m² 수준이었다. 그러나 다공성 원료의 혼합에 따라 수분의 흡습력 특성은 크게 개선되어, 포항 제올라이트 10% 패널의 경우에 흡습량 180 g/m², 방습량 105 g/m² 수준이었다. 또한 패널의 비표면적 및 기공 부피와 수분 흡습력과의 상관성은 각각 0.86 및 0.74 수준으로 도출되어, 비표면적과 수분 흡습량에는 높은 상관성이 있음을 확인하였다. 또한 다공성 원료의 종류에 따라서도 패널의 수분 흡습력은 차이가 있었으며, 이는 다공성 원료의 영향으로 판단되었다.

REFERENCES