The Various Operations of Fuzzy Approximations

Yong Chan Kim¹ and Young Sun Kim²

¹ Department of Mathematics, Kangnung National University, Gangneung, 201-702, Korea
² Department of Applied Mathematics, Pai Chai University, Dae Jeon, 302-735, Korea

Abstract

We investigate the various operations of lower and upper approximations on a stsc quantale lattice \(L \).

Key Words : stsc-quantales, information spaces, lower and upper approximations, fuzzy relations.

1. Introduction and preliminaries

Rough set theory was introduced by Pawlak [14-16] with an equivalence relation. From both theoretical and practical viewpoints, the equivalence relation is a very strong condition that may limit applications of rough sets. Various extensions were developed from an equivalence relation to a fuzzy relation, covering, a neighborhood system in recent years [1-4,10,11]. Quantales have arisen in an analysis of the semantics of linear logic systems developed by Girard [5], which supports part of foundation of theoretic computer science. Höhle [7-9] developed the algebraic structures and many valued topologies in a sense of quantales and cqm-lattices. Bělohlávek [1-3] investigate the properties of fuzzy relations and similarities on a residual lattice.

In this paper, we study the various approximations as a generalization as fuzzy rough set in [4]. Moreover, we investigate the properties of various approximations with fuzzy relations and the relationship among them on a stsc quantale lattice \(L \).

Definition 1.1. [10-13] A triple \((L, \leq, \oplus) \) is called a strictly two-sided, commutative quantale (stsc-quantale, for short) if it satisfies the following conditions:

1. \(L = (L, \leq, \lor, \land, 1, 0) \) is a completely distributive lattice where 1 is the universal upper bound and 0 denotes the universal lower bound;
2. \((L, \oplus) \) is a commutative semigroup;
3. \(a = a \oplus 1 \), for each \(a \in L \);
4. \(\oplus \) is distributive over arbitrary joins, i.e.
 \[
 \bigvee_{i \in \Gamma} a_i \oplus b = \bigvee_{i \in \Gamma} (a_i \oplus b).
 \]

Remark 1.2. [10-13](1) A completely distributive lattice is a stsc-quantale. In particular, the unit interval \([0, 1], \leq, \lor, \land, 0, 1\) is a stsc-quantale.

 (2) The unit interval with a left-continuous t-norm \(t \), \([0, 1], \leq, t\), is a stsc-quantale.

 (3) Let \((L, \leq, \oplus)\) be a stsc-quantale. For each \(x, y \in L \), we define
 \[
 x \rightarrow y = \bigvee\{z \in L \mid x \oplus z \leq y\}.
 \]

Then it satisfies Galois correspondence, that is,
\[(x \circ y) \leq z \iff x \leq (y \rightarrow z).

Lemma 1.3. [10-13,17] Let \((L, \leq, \circ)\) be a stsc-quantale with a strong negation \(x^* \equiv x \rightarrow 0 \). We define \(x \circ y = (x^* \circ y^*)^* \) for all \(x, y \in L \). Let \(x, y, z, x_i, y_i \in L \) for all \(i \in \Gamma \), we have the following properties.

1. If \(y \leq z, (x \circ y) \leq (x \circ z), x \rightarrow y \leq x \rightarrow z \) and \(z \rightarrow x \leq y \rightarrow x \).
2. \(x \circ y \leq x \land y \leq x \lor y \).
3. \(x \rightarrow (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \rightarrow y_i) \).
4. \((\bigvee_{i \in \Gamma} x_i) \rightarrow y = \bigvee_{i \in \Gamma} (x_i \rightarrow y) \).
5. \(x \rightarrow (\bigvee_{i \in \Gamma} y_i) \geq \bigvee_{i \in \Gamma} (x \rightarrow y_i) \).
6. \((\bigwedge_{i \in \Gamma} x_i) \rightarrow y \geq \bigvee_{i \in \Gamma} (x_i \rightarrow y) \).
7. \((x \circ y) \rightarrow z = x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z) \).
8. \(x \circ (x \rightarrow y) \leq y \) and \(x \rightarrow y \leq (y \rightarrow z) \rightarrow (x \rightarrow z) \).
9. \(y \circ z \leq x \rightarrow (x \circ y \circ z) \) and \(x \circ (x \circ y \circ z) \leq y \rightarrow z \).
10. \((x \circ y)^* = x \rightarrow y^* \).
11. \((x \rightarrow y) \circ (y \rightarrow z) \leq x \rightarrow z \).
12. \(x \rightarrow y = 1 \text{ iff } x \leq y \).
13. \(x \rightarrow y = y^* \rightarrow x^* \) and \(x \rightarrow y = (x \circ y^*)^* = x^* \oplus y \).

In this paper, we assume \((L, \leq, \oplus)\) is a stsc-quantale with a strong negation.

Definition 1.4. [4,10,11] Let \(U \) be a set of objects and \(V \) a set of attributes. A map \(R : U \times V \rightarrow L \) is called a fuzzy relation. The triple \((U, V, R)\) is called an information space.
Definition 1.5. [4,10,11] Let U be a set. A function $R: U \times U \to L$ is called:

(R1) reflexive if $R(x,x) = 1$ for all $x \in U$,

(R2) symmetric if $R(x,y) = R(y,x)$ for all $x, y \in U$,

(R3) transitive if $R(x,y) \circ R(y,z) \leq R(x,z)$, for all $x, y, z \in U$.

If R satisfies (R1) and (R2), then R is an \odot-quasi-equivalence relation. If an \odot-quasi-equivalence relation R satisfies (R2), then R is an \odot-equivalence relation.

Theorem 1.6. [11] Let $R_1 \in L^U \times V$ and $R_2 \in L^V \times W$ be fuzzy relations. The compositions of R_1 and R_2 are defined as

$$R_1 \circ R_2(x,z) = \bigvee_{y \in V} R_1(x,y) \odot R_2(y,z)$$

$$(R_1 \Rightarrow R_2)(x,z) = \bigwedge_{y \in V} (R_1(x,y) \rightarrow R_2(y,z))$$

$$(R_1 \Leftarrow R_2)(x,z) = \bigwedge_{y \in V} (R_2(y,z) \rightarrow R_1(x,y))$$

where $R_1 \Rightarrow R_2 = \bigwedge_{y \in V} (R_1(x,y) \rightarrow R_2(y,z))$.

Then we have the following properties.

(1) $(R_1 \circ R_2)^* = R_2^* \circ R_1^*$.

(2) $(R_1 \circ R_2)^* = R_1 \Rightarrow R_2^* = R_2 \Rightarrow R_1 = R_1^* \odot R_2^*$.

(3) $(R_1 \Rightarrow R_2)^* = R_2^* \Leftarrow R_1^* = (R_2^*)^* \Rightarrow (R_1^*)^*$.

(4) $(R_1 \Leftarrow R_2)^* = R_2^* \Rightarrow R_1^*$.

(5) $(R_1 \Leftarrow R_2)^* = R_2^* \Rightarrow R_1^*$.

Theorem 1.7. [11] Let $R \in L^U \times U$ be a fuzzy relation. We have the following properties.

(1) If R is reflexive, then $R \odot R$ is reflexive, $R \leq (R \odot R)$,

$$(R \Rightarrow R) \leq R, (R^* \Rightarrow R) \leq R, (R \Leftarrow R) \leq R$$

and $(R \Leftarrow R)^* \leq R$.

(2) $(R \circ R)^* = (R^* \circ R^*)^*$. If R^* is reflexive, then $R \odot R \leq R$.

(3) R is symmetric iff $(R \Rightarrow R)$ is reflexive iff $(R \Leftarrow R)$ is reflexive.

(4) If R is symmetric, then $R \odot R$ is symmetric, $(R \Leftarrow R)^* = R \Rightarrow R, (R \Rightarrow R)^* = R^* \Rightarrow R^*$ and $R \Leftarrow R$ is symmetric and reflexive.

(5) $R^* \circ R \leq R$ iff $R \leq (R \Rightarrow R)$. Moreover, $R \odot R^* \leq R$ iff $(R \Leftarrow R)$. Moreover, R^* is transitive iff $R \leq R \odot R$.

(6) R is transitive iff $R \odot R \leq R$ iff $R \leq (R \Rightarrow R)$ iff $R \leq (R \Leftarrow R)$. Moreover, R^* is transitive iff $R \leq R \odot R$.

(7) If $R^* \circ R^* \leq R^*$, then $R \leq R \odot R$.

(8) If R is an \odot-quasi-equivalence relation, then $R = (R \circ R) = (R^* \Rightarrow R) = (R \Leftarrow R)^*$ and $R^* = R^* \odot R^*$. Moreover, $R \circ R$ and $R^* \circ R^*$ are symmetric.

(9) $R^* \circ R \leq R$ and R is reflexive iff R is an \odot-quasi-equivalence relation iff $(R \Rightarrow R)$ and R are reflexive and $R \leq (R \Rightarrow R)$ iff $(R \Leftarrow R)$ and R are reflexive and $R \leq (R \Leftarrow R)$.

(11) If $R^* \circ R^* \leq R$ and R is reflexive, then $R = R \odot R^*$.

(12) If R is an \odot-equivalence relation, then $R = (R \circ R) = (R \Rightarrow R) = (R \Leftarrow R)$ and $R^* = R^* \odot R^*$.

(13) If R is reflexive and symmetric, then $R \Leftarrow R$ is an \odot-equivalence relation.

(14) Let R be reflexive and symmetric. We define

$$R^\infty(x,y) = \bigvee_{n \in N} R^n(x,y)$$

where $R^n = R \circ R \circ \ldots \circ R$. Then R^∞ is an \odot-equivalence relation.

(15) $(R \circ R^*)$ and $(R^* \circ R)$ are \odot-equivalence relations.

2. The various operations of fuzzy approximations

Definition 2.1. Let (U, V, R) be an information space with a fuzzy relation $R \in L^U \times V$. For each $A \in L^U$ and $B \in L^V$, we define:

(1) A lower approximation $\text{apr}_{R_n} : L^V \to L^U$ is defined as:

$$\text{apr}_{R_n}(B)(x) = \bigvee_{y \in V} (R(x,y) \rightarrow B(y))$$

and an upper approximation $\overline{\text{apr}}_{R_n} : L^V \to L^U$ is defined as:

$$\overline{\text{apr}}_{R_n}(B)(x) = \bigwedge_{y \in V} (R(x,y) \odot B(y)).$$

(2) A lower approximation $\text{apr}_{R_n} : L^U \to L^V$ is defined as:

$$\text{apr}_{R_n}(A)(y) = \bigvee_{x \in U} (R(x,y) \rightarrow A(x))$$

and an upper approximation $\overline{\text{apr}}_{R_n} : L^U \to L^V$ is defined as:

$$\overline{\text{apr}}_{R_n}(A)(y) = \bigwedge_{x \in U} (R(x,y) \odot A(x)).$$

597
(3) A map $Ib_R : L^V \rightarrow L^U$ is defined as:

$$Ib_R(B)(x) = \bigwedge_{y \in V} (B(y) \rightarrow R(x, y))$$

and a map $Ub_R : L^V \rightarrow L^U$ is defined as:

$$Ub_R(A)(y) = \bigwedge_{x \in U} (A(x) \rightarrow R(x, y)).$$

(4) A map $O_{R_u} : L^V \rightarrow L^U$ is defined as:

$$O_{R_u}(B)(x) = \bigwedge_{y \in V} (B(y) \oplus R(x, y))$$

and a map $O_{R_v} : L^U \rightarrow L^V$ is defined as:

$$O_{R_v}(A)(y) = \bigwedge_{x \in U} (A(x) \oplus R(x, y)).$$

(5) A map $P_{R_u} : L^V \rightarrow L^U$ is defined as

$$P_{R_u}(B)(x) = Ib^*_R(B)(x)$$

and a map $P_{R_v} : L^U \rightarrow L^V$ is defined as

$$P_{R_v}(A)(y) = Ub^*_R(A)(y).$$

Theorem 2.2. Let (U, V, R) be an information space.

1. $\overline{apr}_{R_u}(B) = O_{R_u}(B) = Ib^*_R(B)$, for all $B \in L^V$.
2. $\overline{apr}_{R_v}(A) = O_{R_v}(A) = Ub^*_R(A)$, for all $A \in L^U$.
3. $(\overline{apr}_{R_u}(B))^* = Ib^*_R(B) = O_{R_v}(B)$
4. $(\overline{apr}_{R_v}(A))^* = Ub^*_R(A) = O_{R_u}(A)$
5. $O_{R_u}(B) = \overline{apr}_{R_u}(B) = Ib^*_R(B)$, for all $B \in L^V$.
6. $O_{R_v}(A) = \overline{apr}_{R_v}(A) = Ub^*_R(A)$, for all $A \in L^U$.
7. $P_{R_u}(B) = (\overline{apr}_{R_u}(B))^* = \overline{apr}_{R_v}(B)$, for all $B \in L^V$.
8. $P_{R_v}(A) = (\overline{apr}_{R_v}(A))^* = \overline{apr}_{R_u}(A)$, for all $A \in L^U$.

Proof. (1) From Lemma 1.3(13), we obtain:

$$\overline{apr}_{R_u}(B)(x) = \bigwedge_{y \in V} (R(x, y) \rightarrow B(y))$$

$$= \bigwedge_{y \in V} (R(x, y) \oplus B^*(y)) = O_{R_v}(B)(x)$$

$$\overline{apr}_{R_v}(A)(y) = \bigwedge_{x \in U} (A(x) \rightarrow R(x, y))$$

$$= \bigwedge_{y \in V} (A(x) \oplus R^*(y, x)) = P_{R_u}(A)(y).$$

(5) $O_{R_u}(B)(x) = \bigwedge_{y \in V} (B(y) \oplus R(x, y))$

Other cases are similarly proved.

Theorem 2.3. Let (U, V, R_1) and (V, W, R_2) be two information spaces. We have the following properties.

1. $\overline{apr}_{R_1 \circ R_2}(x) = \overline{apr}_{R_1} \circ \overline{apr}_{R_2}$
2. $\overline{apr}_{R_1 \circ R_2}(x) = \overline{apr}_{R_2} \circ \overline{apr}_{R_1}$
3. $Ib_{R_1 \circ R_2} = \overline{apr}_{R_1} \circ Ib_{R_2}$
4. $Ub_{R_1 \circ R_2} = Ub_{R_2} \circ \overline{apr}_{R_1}$
5. $Ib_{R_1 \circ R_2} = Ib_{R_1} \circ \overline{apr}_{R_2}$
6. $Ub_{R_1 \circ R_2} = \overline{apr}_{R_2} \circ Ub_{R_1}$
7. $O_{R_1 \circ R_2} = \overline{apr}_{R_2} \circ O_{R_1}$
8. $Ib_{R_1 \circ R_2} = \overline{apr}_{R_1} \circ Ib_{R_2}$
9. $Ub_{R_1 \circ R_2} = \overline{apr}_{R_1} \circ Ub_{R_2}$
10. $O_{R_1 \circ R_2} = O_{R_1} \circ O_{R_2}$
11. $P_{R_1 \circ R_2} = P_{R_1} \circ P_{R_2}$
12. $P_{R_1 \circ R_2} = \overline{apr}_{R_1} \circ (\overline{apr}_{R_2}(A))$
13. $P_{R_1 \circ R_2} = \overline{apr}_{R_1} \circ (\overline{apr}_{R_2}(A))$

Proof. (1) For each $C \in L^W$ and $x \in U$,

$$\overline{apr}_{R_1 \circ R_2}(C)(x) = \bigwedge_{y \in W} (R_1(y, x) \rightarrow C(z))$$

$$= \bigwedge_{y \in W} (R_1(y, x) \circ R_2(y, z) \rightarrow C(z))$$

$$= \bigwedge_{y \in W} (R_1(y, x) \rightarrow (R_2(y, z) \rightarrow C(z)))$$

$$= \bigwedge_{y \in W} (\overline{apr}_{R_1}(R_2(y, z) \rightarrow C(z)))$$

$$= \bigwedge_{y \in W} (\overline{apr}_{R_2}(C)(y)).$$
(3) For each \(C \in L^W \) and \(x \in U \),

\[
Ib_{(R_1 \Rightarrow_R_2)}(C)(x) = \bigwedge_{z \in W} (C(z) \rightarrow (R_1 \Rightarrow_R_2)(x, z)) = \bigwedge_{z \in W} \bigwedge_{y \in V} (R_1(x, y) \rightarrow R_2(y, z)) = \bigwedge_{z \in W} \bigwedge_{y \in V} (C(z) \circ R_1(x, y) \rightarrow R_2(y, z)) = \bigwedge_{z \in W} \bigwedge_{y \in V} (R_1(x, y) \rightarrow (C(z) \rightarrow R_2(y, z))) = \bigwedge_{z \in W} \bigwedge_{y \in V} R_1(x, y) \rightarrow \bigwedge_{z \in W} (C(z) \rightarrow R_2(y, z)) = \bigwedge_{z \in W} \bigwedge_{y \in V} R_1(x, y) \rightarrow \bigwedge_{z \in W} (C(z) \in U) = \bigwedge_{z \in W} R_1(x, y) \rightarrow Ib_{R_2}(C)(y) = \frac{pr}{R_1 \in [U]} (Ib_{R_2}(C))(x).
\]

(4) For each \(A \in L^U \) and \(z \in W \),

\[
Ub_{(R_1 \Rightarrow_R_2)}(A)(z) = \bigwedge_{x \in U} (A(x) \rightarrow (R_1 \Rightarrow_R_2)(x, z)) = \bigwedge_{x \in U} \bigwedge_{y \in V} (R_1(x, y) \rightarrow R_2(y, z)) = \bigwedge_{x \in U} \bigwedge_{y \in V} (A(x) \rightarrow (R_1(x, y) \rightarrow R_2(y, z))) = \bigwedge_{x \in U} \bigwedge_{y \in V} (A(x) \rightarrow (R_1(x, y) \circ R_2(y, z))) = \bigwedge_{x \in U} \bigwedge_{y \in V} (V \in U) (A(x) \circ R_1(x, y) \rightarrow R_2(y, z)) = \bigwedge_{x \in U} \bigwedge_{y \in V} \frac{pr}{R_1 \in [U]} (A)(y) \rightarrow R_2(y, z) = Ub_{R_2}(\frac{pr}{R_1 \in [U]} (A))(z).
\]

(5) For each \(C \in L^W \) and \(x \in U \),

\[
Ib_{(R_1 \Rightarrow_R_2)}(C)(x) = \bigwedge_{z \in W} (C(z) \rightarrow (R_1 \Rightarrow_R_2)(x, z)) = \bigwedge_{z \in W} \bigwedge_{y \in V} (R_1(x, y) \rightarrow R_2(y, z)) = \bigwedge_{z \in W} \bigwedge_{y \in V} (C(z) \rightarrow R_2(y, z)) = \bigwedge_{z \in W} \bigwedge_{y \in V} (C(z) \circ R_2(y, z)) = \bigwedge_{z \in W} \bigwedge_{y \in V} (R_1(x, y) \rightarrow (C(z) \circ R_2(y, z))) = \bigwedge_{z \in W} \bigwedge_{y \in V} R_1(x, y) \rightarrow \bigwedge_{z \in W} (C(z) \circ R_2(y, z)) = \bigwedge_{z \in W} \bigwedge_{y \in V} R_1(x, y) \rightarrow \bigwedge_{z \in W} (C(z) \circ R_2(y, z)) = \bigwedge_{z \in W} \bigwedge_{y \in V} (C(z) \circ R_2(y, z)) = \bigwedge_{z \in W} \bigwedge_{y \in V} \frac{pr}{R_1 \in [U]} (C)(y) \rightarrow R_1(x, y) = Ib_{R_1}(\frac{pr}{R_1 \in [U]} (C))(x).
\]

(6) For each \(A \in L^U \) and \(z \in W \),

\[
Ub_{(R_1 \Rightarrow_R_2)}(A)(z) = \bigwedge_{x \in U} (A(x) \rightarrow (R_1 \Rightarrow_R_2)(x, z)) = \bigwedge_{x \in U} \bigwedge_{y \in V} (R_1(x, y) \rightarrow R_2(y, z)) = \bigwedge_{x \in U} \bigwedge_{y \in V} (A(x) \rightarrow (R_1(x, y) \circ R_2(y, z))) = \bigwedge_{x \in U} \bigwedge_{y \in V} (R_2(y, z) \rightarrow (A(x) \circ R_1(x, y))) = \bigwedge_{x \in U} \bigwedge_{y \in V} (R_2(y, z) \rightarrow \bigwedge_{x \in U} (A(x) \circ R_1(x, y))) = \bigwedge_{x \in U} \bigwedge_{y \in V} \frac{pr}{R_1 \in [U]} (A)(y) \rightarrow R_1(x, y) = \frac{pr}{R_2 \in [U]} (Ub_{R_1}(A))(z).
\]

(8) For each \(C \in L^W \) and \(x \in U \),

\[
Ib_{R_1 \circ_R_2}(C)(x) = \bigwedge_{z \in W} (C(z) \rightarrow (R_1 \circ_R_2)(x, z)) = \bigwedge_{z \in W} \bigwedge_{y \in V} (R_1(x, y) \circ_R_2 R_2(y, z)) = \bigwedge_{z \in W} \bigwedge_{y \in V} (C(z) \circ R_1(x, y) \circ R_2(y, z)) = \bigwedge_{z \in W} \bigwedge_{y \in V} ((R_1(x, y) \circ R_2(y, z)) \rightarrow C(z)) = \bigwedge_{z \in W} \bigwedge_{y \in V} (R_1(x, y) \circ R_2(y, z) \rightarrow C(z)) = \bigwedge_{z \in W} \bigwedge_{y \in V} (R_1(x, y) \rightarrow \bigwedge_{z \in W} (C(z) \circ R_2(y, z))) = \bigwedge_{z \in W} \bigwedge_{y \in V} (R_1(x, y) \rightarrow \bigwedge_{z \in W} (C(z) \circ R_2(y, z))) = \bigwedge_{z \in W} \bigwedge_{y \in V} \frac{pr}{R_1 \in [U]} (R_2(C))(x) = \bigwedge_{z \in W} \bigwedge_{y \in V} \frac{pr}{R_1 \in [U]} (R_2(C))(x).
\]

(10) For each \(C \in L^W \) and \(x \in U \),

\[
O_{R_1}(O_{R_2}(C))(x) = \bigwedge_{z \in W} (O_{R_2}(C)(y) \rightarrow R_1(x, y)) = \bigwedge_{z \in W} \bigwedge_{y \in V} (O_{R_2}(C)(y) \rightarrow R_1(x, y)) = \bigwedge_{z \in W} \bigwedge_{y \in V} (O_{R_2}(C)(y) \rightarrow (R_1 \circ_R_2)(x, y)) = \bigwedge_{z \in W} \bigwedge_{y \in V} (O_{R_2}(C)(y) \rightarrow (R_1 \circ_R_2)(x, y)) = \bigwedge_{z \in W} \bigwedge_{y \in V} (O_{R_2}(C)(y) \rightarrow (R_1 \circ_R_2)(x, y)) = \bigwedge_{z \in W} \bigwedge_{y \in V} \frac{pr}{R_1 \in [U]} (O_{R_2}(C))(x).
\]

(11) For each \(A \in L^U \) and \(z \in W \),

\[
(P_{R_1 \circ_R_2}(P_{R_1}(A))) \ast(z) = \bigwedge_{y \in V} (P_{R_1}(A)(y) \rightarrow R_2(y, z)) = \bigwedge_{y \in V} \bigwedge_{y \in V} (P_{R_1}(A)(y) \rightarrow R_2(y, z)) = \bigwedge_{y \in V} \bigwedge_{y \in V} (P_{R_1}(A)(y) \rightarrow (R_1 \circ_R_2)(x, y)) = \bigwedge_{y \in V} \bigwedge_{y \in V} (P_{R_1}(A)(y) \rightarrow (R_1 \circ_R_2)(x, y)) = \bigwedge_{y \in V} \bigwedge_{y \in V} \frac{pr}{R_1 \in [U]} (P_{R_1}(A))(x).
\]

Other cases are similarly proved. \(\square \)

Example 2.4. Let \(U = \{x_1, x_2, x_3, x_4\}, V = \{y_1, y_2, y_3\}, W = \{z_1, z_2\} \) be sets and \(R_1 \in L^U \times V, R_2 \in L^W \times U \).
Define binary operations \circ, \rightarrow (called Łukasiewicz conjunction) on $[0, 1]$ by
\[
x \circ y = \max\{0, x + y - 1\}, \quad x \rightarrow y = \min\{1 - x + y, 1\}.
\]
Then $([0, 1], \lor, \circ, 0, 1)$ is a stsc-quantale (ref.[10,11,17]).

\[
R_1 \circ R_2 = \begin{pmatrix}
1 & 0.6 & 0.8 \\
0.7 & 1 & 0.5 \\
0.3 & 0.6 & 1
\end{pmatrix}, \quad R_1 \rightarrow R_2 = \begin{pmatrix}
1 & 0 \\
0.7 & 1 \\
0.4 & 0.5
\end{pmatrix}.
\]

Put $C(z_1) = 0.8, C(z_2) = 0.7$. We obtain
\begin{enumerate}
 \item \(\text{ap}_{R_1 \circ R_2}(C) = (0.8, 0.7, 1, 0.9, 0.9) = \text{ap}_{R_1}(C) \circ \text{ap}_{R_2}(C)\).
 \item \(I_{b_{R_1 \circ R_2}}(C) = (0.3, 0.9, 0.6, 0.4) = \text{ap}_{R_1}(I_{b_{R_2}}(C))\).
 \item \(I_{b_{R_1 \circ R_2}}(C) = (0.3, 0.9, 0.6, 0.4) = \text{ap}_{R_1}(I_{b_{R_2}}(C))\).
 \item \(I_{b_{R_1 \circ R_2}}(C) = (0.3, 0.9, 0.6, 0.4) = \text{ap}_{R_1}(I_{b_{R_2}}(C))\).
\end{enumerate}

Corollary 2.5. Let (U, U, R) be an information space. For $R \in L^{U \times U}$, we have the following properties.

\begin{enumerate}
 \item $F_{R_1} \circ F_{R_2} = F_{(R_1 \circ R_2)_{\lor}}$ and $F_{R_1} \circ F_{R_2} = F_{(R_1 \circ R_2)_{\land}}$, for each $F \in \{\text{ap}_{R_1}, \text{ap}_{R_2}\}$.
 \item $F_{R_1} \circ F_{R_2} = F_{(R_1 \circ R_2)_{\lor}}$ and $F_{R_1} \circ F_{R_2} = F_{(R_1 \circ R_2)_{\land}}$, for each $F \in \{\text{ap}_{R_1}, \text{ap}_{R_2}\}$.
 \item $F_{R_1} \circ F_{R_2} = F_{(R_1 \circ R_2)_{\lor}}$ and $F_{R_1} \circ F_{R_2} = F_{(R_1 \circ R_2)_{\land}}$, for each $F \in \{\text{ap}_{R_1}, \text{ap}_{R_2}\}$.
 \item $F_{R_1} \circ F_{R_2} = F_{(R_1 \circ R_2)_{\lor}}$ and $F_{R_1} \circ F_{R_2} = F_{(R_1 \circ R_2)_{\land}}$, for each $F \in \{\text{ap}_{R_1}, \text{ap}_{R_2}\}$.
\end{enumerate}

Proof. (2)

\[
\text{ap}_{R_1}(\text{ap}_{R_2}(A))(x) = \bigvee_{y \in Y} (\text{ap}_{R_1}(A)(y) \circ R(x, y)) = \bigwedge_{z \in U} (A(z) \circ \bigvee_{y \in Y} (R(z, y) \circ R(x, y)))
\]

Other cases are similarly proved from Theorem 2.3.

From Theorem 1.7 and Corollary 2.5, we can obtain the following corollaries.

Corollary 2.6. Let $R \in L^{U \times U}$ be an quasi-equivalence relation. Then we have the following properties.

\begin{enumerate}
 \item $F_{R_1} \circ F_{R_2} = F_{R_1}$ and $F_{R_1} \circ F_{R_2} = F_{R_2}$, for each $F \in \{\text{ap}_{R}, \text{ap}_{R}\}$.
 \item $I_{b_{R_1}} = \text{ap}_{R_1} \circ I_{b_{R_2}}$.
 \item $U_{b_{R_1}} = U_{b_{R_2}} \circ \text{ap}_{R_2}$.
 \item $I_{b_{R_2}} = I_{b_{R_1}} \circ \text{ap}_{R_2}$.
 \item $U_{b_{R_2}} = U_{b_{R_1}} \circ \text{ap}_{R_2}$.
 \item $O_{R_1} = \text{ap}_{R_1} \circ O_{R_2}$ and $O_{R_1} = O_{R_2}$.
\end{enumerate}

Moreover, if R is symmetric, then $F_{R_1} \circ F_{R_2} = F_{R_1} \circ F_{R_2}$, for each $F \in \{\text{ap}_{R}, \text{ap}_{R}\}$.

Corollary 2.7. Let $R^* \in L^{U \times U}$ be an quasi-equivalence relation. Then we have the following properties.

\begin{enumerate}
 \item $F_{R_1} \circ F_{R_2} = F_{R_1}$ and $F_{R_1} \circ F_{R_2} = F_{R_2}$, for each $F \in \{O, P\}$.
 \item $I_{b_{R_1}} = \text{ap}_{R_1} \circ I_{b_{R_2}}$.
 \item $U_{b_{R_1}} = U_{b_{R_2}} \circ \text{ap}_{R_2}$.
 \item $I_{b_{R_2}} = I_{b_{R_1}} \circ \text{ap}_{R_2}$.
 \item $U_{b_{R_2}} = U_{b_{R_1}} \circ \text{ap}_{R_2}$.
 \item $O_{R_1} = \text{ap}_{R_1} \circ O_{R_2}$ and $O_{R_1} = O_{R_2}$.
\end{enumerate}

Moreover, if R is symmetric, then $F_{R_1} \circ F_{R_2} = F_{R_1} \circ F_{R_2}$, for each $F \in \{O, P\}$.

Example 2.8. Let $(U = \{a, b, c\}, AT = V = \{a, b, c\}, R)$ be an information space as follows:

\[
R = \begin{pmatrix}
1 & 0.4 & 0.1 \\
0 & 1.0 & 0.3 \\
0 & 0.5 & 1.0
\end{pmatrix}.
\]

Define binary operations \circ, \rightarrow as same as in Example 2.4.

(1) Since $R \circ R = R$ and R is reflexive, we have properties (1-6) of Corollary 2.6.

(2) We have $R \circ R^* \neq R$ because

\[
0 = R(b, a) \neq \bigvee_{y \in Y} (R(b, y) \circ R(a, y)) = 0.4
\]

\[
R \circ R^* = \begin{pmatrix}
1 & 0.4 & 0.1 \\
0.4 & 1.0 & 0.5 \\
0.1 & 0.5 & 1.0
\end{pmatrix}.
\]
For $A \in L^U$ with $A(a) = 0.1$, $A(b) = 0.9$, $A(c) = 0.2$, we have

\[
\mathcal{ap}_{R_c}(A)(a) = 0.1, \mathcal{ap}_{R_c}(A)(b) = 0.9, \mathcal{ap}_{R_c}(A)(c) = 0.2 \\
\mathcal{ap}_{R_c}(\mathcal{ap}_{R_c}(A))(a) = 0.3, \mathcal{ap}_{R_c}(\mathcal{ap}_{R_c}(A))(b) = 0.9, \mathcal{ap}_{R_c}(\mathcal{ap}_{R_c}(A))(c) = 0.4.
\]

Hence $\mathcal{ap}_{R \cap R_c}(A) = \mathcal{ap}_{R_c}(\mathcal{ap}_{R_c}(A)) \neq \mathcal{ap}_{R_c}(A)$.

(3) For $B \in L^U$ with $B(a) = 0.1, B(b) = 0.5, B(c) = 0.9$, we have

\[
\mathcal{ap}_{R_a}(B)(a) = \bigwedge_{y \in V} \mathcal{R}(a, y) \rightarrow B(y) = 0.1, \\
\mathcal{ap}_{R_a}(B)(b) = 0.5, \mathcal{ap}_{R_a}(B)(c) = 0.9
\]

Since

\[
\mathcal{ap}_{R_c}(\mathcal{ap}_{R_a}(B))(c) = \bigwedge_{x \in V} (R(x, a) \rightarrow \mathcal{ap}_{R_a}(B)(x)) = 0.8
\]

we have $\mathcal{ap}_{R \circ R_c}(B) = \mathcal{ap}_{R_c}(\mathcal{ap}_{R_a}(B)) \neq \mathcal{ap}_{R_a}(B)$.

References

저 자 소 개

Yong Chan Kim
He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1984 and 1991, respectively. From 1991 to present, he is a professor in the Department of Mathematics, Kangnung University. His research interests are fuzzy topology and fuzzy logic.

Young Sun Kim
He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1985 and 1991, respectively. From 1988 to present, he is a professor in the Department of Applied Mathematics, Pai Chai University. His research interests are fuzzy topology and fuzzy logic.