A STRUCTURE THEOREM
FOR COMPLETE INTERSECTIONS

EUN JEONG Choi, OH-JIN Kang, AND HYOUNG J. Ko

ABSTRACT. Buchsbaum and Eisenbud proved a structure theorem for Gorenstein ideals of grade 3. In this paper we derive a class of the perfect ideals from a class of the complete matrices. From this we give a structure theorem for complete intersections of grade $g > 3$.

1. Introduction

Let R be a Noetherian local ring and I a perfect ideal of grade g in R. Many people have been studying the algebra structure on the minimal free resolution of R/I, in particular, Gorenstein ideals, the ideals of type 1. In 1968, Burch [3] characterized perfect ideals of grade 2 by showing a structure theorem due to Hilbert in a special case: every perfect ideal of grade 2 generated by n elements is the ideal of $(n - 1)$st order minors of an $(n - 1) \times n$ matrix. In 1977, Buchsbaum and Eisenbud [2] gave a structure theorem for Gorenstein ideals of grade 3 which says that every Gorenstein ideal of grade 3 in R is generated by the maximal order Pfaffians of an alternating matrix. However a structure theorem for Gorenstein ideals of grade 4 is more complicated than that of grade 3 and not completely known. In 1987, Brown [1] described a structure theorem for a certain class of perfect ideals I which have grade 3, type 2 and $\lambda(I) = \dim_k \Lambda^2_1 > 0$, where $\lambda(I)$ is a numerical invariant defined in [5]. In 1989, Sanchez [7] gave a structure theorem for type 3, grade 3 perfect ideals which have $\lambda(I) = \dim_k \Lambda^2_1 = 2$ or greater. In this paper we will describe a structure theorem for complete intersections of grade $g > 3$, which says that every complete intersection of grade $g > 3$ in R is generated by the elements x_i’s, where x_i^{g-1} is the determinant of the $(g - 1) \times (g - 1)$ diagonal matrix drawn from a complete matrix of grade g for each i ($1 \leq i \leq g$).

In Section 2 we review some of the properties of alternating matrices, linkage theory, and a structure theorem for Gorenstein ideals of grade 3.

In Section 3 we give the concept of a complete matrix of grade 4 and provide a structure theorem for complete intersections of grade 4.
In Section 4 we introduce a complete matrix f of grade $g > 3$, and define the ideal $K_{g-1}(f)$ associated with f. Then we prove a structure theorem for complete intersections of grade $g > 3$. The structure theorem [4] for complete intersections of grade 4 is just a special case of our main Theorem 4.10. Throughout this paper, we assume that all rings are a Noetherian local ring with maximal ideal m unless otherwise stated.

2. Gorenstein ideals of grade 3

The grade of a proper ideal I in R is the length of the maximal R-sequence contained in I. We say that an ideal I of grade g is perfect if grade $I = \text{projdim}_R(R/I) = g$. If I is a perfect ideal of grade g, then the type of I is defined to be the dimension of the R/m-vector space $\text{Ext}_R^g(R/m, R/I)$. A perfect ideal I of grade g is Gorenstein if type $I = 1$, equivalently, if F is the minimal free resolution of R/I,

$$0 \rightarrow F_g \xrightarrow{\varphi_g} F_{g-1} \xrightarrow{\varphi_{g-1}} \cdots \xrightarrow{\varphi_2} F_1 \xrightarrow{\varphi_1} F_0 (= R),$$

then the rank of F_g is 1. A perfect ideal I of grade g is a complete intersection if it is generated by g elements, and is an almost complete intersection if it is minimally generated by $g + 1$ elements.

Let R be a commutative ring, and F a finite free R-module. An R-module homomorphism $\varphi : F \rightarrow F^*$ is said to be alternating if with respect to some (and therefore any) basis of F and the corresponding dual basis of F^*, the matrix φ is alternating, i.e., skew-symmetric and all its diagonal entries are 0. Now suppose that φ is alternating, choose a basis of F and the corresponding dual basis of this, and identify φ with the corresponding matrix (φ_{ij}). If rank F is odd, then $\det \varphi = 0$, and if rank F is even, then there exists an element $\text{Pf}(\varphi) \in R$, called the Pfaffian of φ, which is a polynomial function of the entries of φ, such that $\det \varphi = \text{Pf}(\varphi)^2$. We set $\text{Pf}(\varphi) = 0$ if rank F is odd.

Pfaffians can be developed along a row just like the determinants. Denote by $\text{Pf}_r(\varphi)$ the ideal generated by the rth order Pfaffians of φ. With these concepts Buchsbaum and Eisenbud gave a complete structure for Gorenstein ideals of grade 3:

Theorem 2.1 ([2]). Let R be a Noetherian local ring with maximal ideal m.

1. Let F be a free R-module with rank $F = n$, where $n \geq 3$ is an odd integer. Let $\varphi : F^* \rightarrow F$ be an alternating map whose image is contained in mF. Suppose that $\text{Pf}_{n-1}(\varphi)$ has grade 3. Then $\text{Pf}_{n-1}(\varphi)$ is a Gorenstein ideal minimally generated by n elements.

2. Every Gorenstein ideal of grade 3 arises as in (1).

Now we review some of the notions in the linkage theory formulated by Peskine and Szpiro in [6].

Definition 2.2. Let I and J be two ideals in a Gorenstein ring R (not necessarily local).
(1) If there exists an R-regular sequence $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_g$ in $I \cap J$ such that $J = (\alpha) : I$ and $I = (\alpha) : J$, then I and J are said to be linked (with respect to α).

(2) If I and J are linked and if $\text{Ass}(R/I) \cap \text{Ass}(R/J) = \emptyset$, equivalently, if I and J are linked (with respect to α) and if $I \cap J = (\alpha)$, then I and J are said to be geometrically linked.

Let R be a Gorenstein local ring of Krull dimension g with maximal ideal m. If I and J are perfect ideals of grade g, then they are not geometrically linked because (R/I) and (R/J) are both zero-dimensional artinian local rings. Peskine and Szpiro gave a method of constructing a Gorenstein ideal of grade $g + 1$ from two perfect ideals of grade g:

Theorem 2.3 ([6]). Let R be a Gorenstein local ring with maximal ideal m. Let I and J be geometrically linked Cohen-Macaulay ideals of grade g by a regular sequence $x = x_1, x_2, \ldots, x_g$ and let $K = I + J$. Then K is a Gorenstein ideal of grade $g + 1$.

Let F be a free R-module with a basis $\{e_1, e_2, \ldots, e_n\}$ and let I be an ideal generated by a regular sequence $x = x_1, x_2, \ldots, x_n$. Let $K(x)$ be the Koszul complex defined by $x = x_1, x_2, \ldots, x_n$. Then

$$K(x) : 0 \longrightarrow \wedge^n F \xrightarrow{d_n} \wedge^{n-1} F \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_2} \wedge^1 F \xrightarrow{d_1} \wedge^0 F$$

is the minimal free resolution of R/I, where $d_1(e_i) = x_i$ for each i with $1 \leq i \leq n$, and for each p with $1 \leq p \leq n$, $d_p : \wedge^p F \rightarrow \wedge^{p-1} F$ is given by

$$(2.1) \quad d_p(e_i_1 \wedge e_i_2 \wedge \cdots \wedge e_i_p) = \sum_{j=1}^p (-1)^{j-1} d_1(e_i_j)e_i_1 \wedge e_i_2 \wedge \cdots \wedge \hat{e}_{i_j} \wedge \cdots \wedge e_i_p.$$

For example, if $x = x_1, x_2, x_3, x_4, x_5$ is a regular sequence on R, then d_2 has the form

$$(2.2) \quad d_2 = \begin{bmatrix}
-x_2 & -x_3 & -x_4 & -x_5 & 0 & 0 & 0 & 0 & 0 \\
x_1 & 0 & 0 & 0 & -x_3 & -x_4 & -x_5 & 0 & 0 \\
0 & x_1 & 0 & 0 & x_2 & 0 & 0 & -x_4 & -x_5 \\
0 & 0 & x_1 & 0 & 0 & x_2 & 0 & x_3 & -x_5 \\
0 & 0 & 0 & x_1 & 0 & 0 & x_2 & 0 & x_3 \\
0 & 0 & 0 & 0 & x_1 & 0 & 0 & x_2 & x_4
\end{bmatrix}.$$

The exterior algebra $\wedge F$ is a graded Hopf algebra such that $x \wedge y = (-1)^{pq} y \wedge x$ for $x \in \wedge^p F$ and $y \in \wedge^q F$ and $x \wedge x = 0$ for any homogeneous element x of odd degree. It is well-known that the algebra structure on the Koszul complex which gives the minimal free resolution of a complete intersection is an exterior algebra.
3. Complete intersections of grade 4

In this section we start with a skew-symmetrizable matrix, and a complete matrix of grade 4 which play important roles in describing the complete intersections of grade 4.

Definition 3.1. Let R be a commutative ring with identity. An $n \times n$ matrix $X = (x_{ij})$ over R is said to be generalized alternating or skew-symmetrizable if there exist nonzero $n \times n$ diagonal matrices $D' = \text{diag}(u_1, u_2, \ldots, u_n)$ and $D = \text{diag}(w_1, w_2, \ldots, w_n)$ with entries in R such that $D'XD$ is alternating. We denote by $\text{GA}_n(R)$ the set of all skew-symmetrizable $n \times n$ matrices over R. If there is no ambiguity about the ring R, then $\text{GA}_n(R)$ is denoted by GA_n.

Notice that every alternating matrix is skew-symmetrizable. For an $n \times n$ skew-symmetrizable matrix X, we denote $\mathcal{A}(X)$ to be an alternating matrix $D'XD$ for some diagonal matrices D' and D. To define a complete intersection of grade 4, we need to describe the submatrices of the given matrix in detail. A $p \times q$ submatrix of an $m \times n$ matrix f is a matrix obtained from f by taking the pq entries at the intersections of the i_1th, i_2th, \ldots, i_pth rows and the j_1th, j_2th, \ldots, j_qth columns of f, where $1 \leq i_1 < i_2 < \cdots < i_p \leq m$ and $1 \leq j_1 < j_2 < \cdots < j_q \leq n$. The corresponding $p \times q$ submatrix of f is denoted by

$$f(i_1, i_2, \ldots, i_p | j_1, j_2, \ldots, j_q).$$

Notice that the $p \times q$ matrix $f(i_1, i_2, \ldots, i_p | j_1, j_2, \ldots, j_q)$ consisting of the pq entries at the intersection of these rows and columns of f could not be a submatrix of f unless $1 \leq i_1 < i_2 < \cdots < i_p \leq m$ and $1 \leq j_1 < j_2 < \cdots < j_q \leq n$.

Next we get into the skew-symmetrizable matrices and the special properties of the second differential map d_2 of the Koszul complex $\mathbb{K}(\mathbf{x})$.

Proposition 3.2. With the notation as above, the second differential map d_2 of the Koszul complex satisfies the following properties:

1. There are four disjoint pairs (S, T) of two 4×3 submatrices of d_2.
2. By removing a row and interchanging columns, each pair (S, T) can be reduced to a pair (\bar{S}, \bar{T}) of 3×3 matrices such that \bar{S} is a diagonal matrix whose determinant is the nonzero 3rd power element x^3 for some $x \in R$, and \bar{T} is a skew-symmetrizable matrix with grade $\text{Pf}_2(\mathcal{A}(\bar{T})) = 3$.
Let \(P_f \) denote the determinant of a skew-symmetrizable matrix \(\mathcal{A} \) with grade \(d \). Then we consider two submatrices of \(\mathcal{A} \) with grade \(d \). Removing the first row and interchanging columns 1 and 3 of \(T_1 \), we have the \(3 \times 3 \) matrix \(T_1 \). Then \(T_1 \) is skew-symmetrizable, since it becomes an alternating matrix by multiplying the second column of it by \(-1\). Since \(x_2, x_3, x_4 \) is a regular sequence on \(R \), \(P_{\mathcal{A}(T_1)}(x_2, x_3, x_4) \) has grade 3. Similarly, we can take the disjoint submatrices of \(d_2 \):

\[
\begin{align*}
S_2 &= d_2(1, 2, 3, 4 \mid 1, 4, 5) \text{ and } T_2 = d_2(1, 2, 3, 4 \mid 2, 3, 6), \\
S_3 &= d_2(1, 2, 3, 4 \mid 2, 4, 6) \text{ and } T_3 = d_2(1, 2, 3, 4 \mid 1, 3, 5), \\
S_4 &= d_2(1, 2, 3, 4 \mid 3, 5, 6) \text{ and } T_4 = d_2(1, 2, 3, 4 \mid 1, 2, 3).
\end{align*}
\]

The similar argument gives us the \(3 \times 3 \) diagonal matrix \(\bar{S} \) whose determinant is equal to \(x_i^3 \) or \((-x_i)^3\), and the \(3 \times 3 \) skew-symmetrizable matrix \(\bar{T} \) with grade \(P_{\mathcal{A}(\bar{T})} = 3 \) for \(i = 2, 3, 4 \).

Definition 3.3. Let \(R \) be a commutative ring with identity. A \(4 \times 6 \) matrix \(f \) over \(R \) is said to be a complete matrix of grade 4 if

1. \(f \) has four distinct pairs \((S, T)\) of disjoint \(4 \times 3 \) submatrices;
2. By removing a row and interchanging columns, each pair \((S, T)\) is reduced to a pair \((\bar{S}, \bar{T})\) of \(3 \times 3 \) matrices such that \(\bar{S} \) is a diagonal matrix whose determinant is a nonzero 3rd power element \(x^3 \) for some \(x \in R \), and \(\bar{T} \) is a skew-symmetrizable matrix with grade \(P_{\mathcal{A}(\bar{T})} = 3 \).

The following example illustrates Definition 3.3.

Example 3.4. Let \(x, y, z, \) and \(w \) be a regular sequence on a commutative ring \(R \). Let \(f \) be a \(4 \times 6 \) matrix given by

\[
f = \begin{bmatrix}
0 & 0 & -y & -w & -z & 0 \\
0 & -z & x & 0 & 0 & -w \\
-w & y & 0 & 0 & x & 0 \\
0 & 0 & x & 0 & y & 0
\end{bmatrix}.
\]

Then \(f \) is a complete matrix of grade 4. To see this, we find four distinct pairs of disjoint \(4 \times 3 \) submatrices \(S_i \) and \(T_i \) of \(f \) satisfying the properties in Proposition 3.2. First we consider two submatrices of \(f \):

\[
S_1 = \begin{bmatrix}
-y & -w & -z \\
x & 0 & 0 \\
0 & 0 & x \\
0 & x & 0
\end{bmatrix} \quad \text{and} \quad T_1 = \begin{bmatrix}
0 & 0 & 0 \\
0 & -z & -w \\
-w & y & 0 \\
z & 0 & y
\end{bmatrix},
\]

that is, \(S_1 = f(1, 2, 3, 4 \mid 3, 4, 5) \) and \(T_1 = f(1, 2, 3, 4 \mid 1, 2, 6) \). So \(S_1 \) and \(T_1 \) are disjoint. By removing the first row and interchanging the second and the third columns of \(S_1 \) and \(T_1 \), we can get the \(3 \times 3 \) matrices \(S_1 = S_1(2, 3, 4 \mid 1, 3, 2) \) and \(T_1 = T_1(2, 3, 4 \mid 1, 3, 2) \). Then \(S_1 \) is a diagonal matrix whose determinant is a nonzero element \(x^3 \) and \(T_1 \) is skew-symmetrizable since \(T_1 \text{diag}(1, -1, 1) \).
Let $S = f(1, 2, 3, 4 | 2, 3, 6)$ and $T = f(1, 2, 3, 4 | 1, 4, 5),
S = f(1, 2, 3, 4 | 1, 2, 5)$ and $T = f(1, 2, 3, 4 | 3, 4, 6),
S = f(1, 2, 3, 4 | 1, 4, 6)$ and $T = f(1, 2, 3, 4 | 2, 3, 5).

Clearly, 4×3 submatrices S_i and T_i of f are disjoint for $i = 2, 3, 4$. The similar argument gives us the following 3×3 matrices:

$S_2 = S_2(1, 3, 4 | 2, 1, 3)$ and $T_2 = T_2(1, 3, 4 | 1, 2, 3),
S_3 = S_3(1, 2, 4 | 3, 2, 1)$ and $T_3 = T_3(1, 2, 4 | 3, 2, 1),
S_4 = S_4(1, 2, 3 | 2, 3, 1)$ and $T_4 = T_4(1, 2, 3 | 1, 3, 2).

And $\det S_2 = (-y)^3$, $\det S_3 = z^3$ and $\det S_4 = (-w)^3$ are nonzero 3rd power elements and

$\text{Pf}_2(A(T_1)) = (y, z, w)$, $\text{Pf}_2(A(T_2)) = (x, z, w),
\text{Pf}_2(A(T_3)) = (x, y, w), \text{Pf}_2(A(T_4)) = (x, y, z).

Since x, y, z, w is a regular sequence on R, these four ideals have all grade 3. Hence the properties in Proposition 3.2 are satisfied.

We notice that if f is a complete matrix of grade 4, then the matrix obtained from f by interchanging rows of f also becomes a complete matrix of grade 4.

Theorem 3.5 ([4]). Let $f = \{f_{ij}\}$ be a 4×6 complete matrix of grade 4.

1. Every column of f has exactly two nonzero entries.
2. The number of nonzero rows in each 4×2 submatrix of f is greater than 2.
3. Each pair (S, T) of 3×3 matrices given in Definition 3.3 is uniquely determined.

Now we will define an ideal $K_3(f)$ generated by the radical roots of the determinants of the 3×3 diagonal matrices S derived from a given complete matrix f of grade 4 in Theorem 3.5.

Definition 3.6. Let f be a 4×6 complete matrix of grade 4. Let S_i be a unique 3×3 diagonal matrix reduced from the disjoint pair (S_i, T_i) of f such that $\det S_i = x_i^3$ is nonzero for $i = 1, 2, 3, 4$. We define $K_3(f)$ to be the ideal generated by the x_i's, that is,

$$K_3(f) = (x_1, x_2, x_3, x_4).$$

Next let us show that the ideal $K_3(f)$ defines a complete intersection of grade 4. Let f be a complete matrix of grade 4. By Theorem 3.5 we may...
Assume
\[f = \begin{bmatrix}
 f_{11} & f_{12} & f_{13} & 0 & 0 & 0 \\
 f_{21} & 0 & 0 & f_{24} & f_{25} & 0 \\
 0 & f_{32} & 0 & f_{34} & 0 & f_{36} \\
 0 & 0 & f_{43} & 0 & f_{45} & f_{46}
\end{bmatrix}. \]

Then we have
\[S_1 = f(2, 3, 4|1, 2, 3) \quad \text{and} \quad T_1 = f(2, 3, 4|6, 5, 4), \]
\[S_2 = f(1, 3, 4|1, 4, 5) \quad \text{and} \quad T_2 = f(1, 3, 4|6, 3, 2), \]
\[S_3 = f(1, 2, 4|2, 4, 6) \quad \text{and} \quad T_3 = f(1, 2, 4|5, 3, 1), \]
\[S_4 = f(1, 2, 3|3, 5, 6) \quad \text{and} \quad T_4 = f(1, 2, 3|4, 2, 1), \]
i.e.,
\[S_1 = \begin{bmatrix}
 f_{21} & 0 & 0 \\
 0 & f_{32} & 0 \\
 0 & 0 & f_{43}
\end{bmatrix} \quad \text{and} \quad T_1 = \begin{bmatrix}
 0 & f_{25} & f_{24} \\
 f_{36} & 0 & f_{34} \\
 f_{46} & f_{45} & 0
\end{bmatrix}, \]
\[S_2 = \begin{bmatrix}
 f_{11} & 0 & 0 \\
 0 & f_{34} & 0 \\
 0 & 0 & f_{45}
\end{bmatrix} \quad \text{and} \quad T_2 = \begin{bmatrix}
 0 & f_{13} & f_{12} \\
 f_{36} & 0 & f_{32} \\
 f_{46} & f_{43} & 0
\end{bmatrix}, \]
\[S_3 = \begin{bmatrix}
 f_{12} & 0 & 0 \\
 0 & f_{24} & 0 \\
 0 & 0 & f_{46}
\end{bmatrix} \quad \text{and} \quad T_3 = \begin{bmatrix}
 0 & f_{13} & f_{11} \\
 f_{25} & 0 & f_{21} \\
 f_{45} & f_{43} & 0
\end{bmatrix}, \]
\[S_4 = \begin{bmatrix}
 f_{13} & 0 & 0 \\
 0 & f_{25} & 0 \\
 0 & 0 & f_{36}
\end{bmatrix} \quad \text{and} \quad T_4 = \begin{bmatrix}
 0 & f_{12} & f_{11} \\
 f_{24} & 0 & f_{21} \\
 f_{34} & f_{32} & 0
\end{bmatrix}. \]

Since \(T_i \text{diag}(u_{i_1}, u_{i_2}, u_{i_3}) \) is alternating where \(u_{i_k} \in \{ \pm 1 \} \), we have the following identities
\[f_{24} = f_{46} \quad \text{or} \quad -f_{46}, \quad f_{25} = f_{36} \quad \text{or} \quad -f_{36}, \quad f_{34} = f_{45} \quad \text{or} \quad -f_{45}, \]
\[f_{12} = f_{46} \quad \text{or} \quad -f_{46}, \quad f_{13} = f_{36} \quad \text{or} \quad -f_{36}, \quad f_{14} = f_{43} \quad \text{or} \quad -f_{43}, \]
\[f_{11} = f_{45} \quad \text{or} \quad -f_{45}, \quad f_{13} = f_{25} \quad \text{or} \quad -f_{25}, \quad f_{12} = f_{43} \quad \text{or} \quad -f_{43}, \]
\[f_{11} = f_{34} \quad \text{or} \quad -f_{34}, \quad f_{12} = f_{24} \quad \text{or} \quad -f_{24}, \quad f_{21} = f_{32} \quad \text{or} \quad -f_{32}. \]

Thus (3.2) and (3.3) give us
\[\det S_1 = f_{21}f_{32}f_{43} = f_{21}^3 \quad \text{or} \quad -f_{21}^3, \quad \det S_2 = f_{11}f_{34}f_{45} = f_{11}^3 \quad \text{or} \quad -f_{11}^3, \]
\[\det S_3 = f_{12}f_{24}f_{46} = f_{12}^3 \quad \text{or} \quad -f_{12}^3, \quad \det S_4 = f_{13}f_{25}f_{36} = f_{13}^3 \quad \text{or} \quad -f_{13}^3, \]
and
\[\text{Pf}_2(A(T_1)) = (f_{11}, f_{12}, f_{13}), \quad \text{Pf}_2(A(T_2)) = (f_{21}, f_{13}, f_{12}), \]
\[\text{Pf}_2(A(T_3)) = (f_{21}, f_{13}, f_{11}), \quad \text{Pf}_2(A(T_4)) = (f_{21}, f_{12}, f_{11}). \]
Hence
\[
Pf_2(A(T_i)) \subseteq K_3(f) = (f_{21}, f_{11}, f_{12}, f_{13}) \quad \text{for} \quad i = 1, 2, 3, 4.
\]
Thus we obtain the structure theorem for complete intersections of grade 4.

Theorem 3.7 ([4]). Let \(R \) be a Noetherian local ring with maximal ideal \(m \).

1. Let \(F \) and \(G \) be free \(R \)-modules with rank \(F = 6 \) and rank \(G = 4 \). Let \(f = (f_{ij}) : F \rightarrow G \) be a complete matrix of grade 4 such that \(\text{Im} \ f \subseteq mG \). With the notation as in Theorem 3.5, we assume that \(Pf_2(A(T_i)) + Pf_2(A(T_j)) \) has grade 4 for some \(i, j \) (\(i \neq j \)). Then the ideal \(K_3(f) \) is a complete intersection of grade 4.

2. Let \(I = (x_1, x_2, x_3, x_4) \) be a complete intersection of grade 4 and let

\[
\mathbb{F} : 0 \longrightarrow R \longrightarrow R^4 \longrightarrow R^6 \longrightarrow \cdots \longrightarrow R^4 \longrightarrow \phi_1 \longrightarrow R
\]
be the minimal free resolution of \(R/I \). Then \(\phi_2 \) and the transpose of \(\phi_3 \) satisfy the part (1).

4. Complete intersections of grade \(g > 4 \)

In this section we construct the ideal \(K_g(f) \) associated with a complete matrix \(f \) of grade \(g > 3 \) and provide a structure theorem for complete intersections of grade \(g > 3 \). We begin this section with easy lemmas.

Lemma 4.1. Let \(R \) be a Noetherian local ring with maximal ideal \(m \). For any positive integer \(g > 3 \), let \(x = x_1, x_2, \ldots, x_g \) and \(y_i = x_1, x_2, \ldots, \hat{x}_i, \ldots, x_g \) be regular sequences on \(R \), where \(\hat{x}_i \) indicates that \(x_i \) is to be omitted. Let \(K(x) \) and \(K(y_i) \) be the Koszul complexes of \(R/(x) \) and \(R/(y_i) \) for each \(i = 1, 2, 3, \ldots, g \).

Let
\[
K(x_i) : 0 \longrightarrow R \longrightarrow x_i \longrightarrow R
\]
be a complex of free \(R \)-modules and \(R \)-maps. Then

1. \(K(x) \cong K(x_i) \otimes K(y_i) \).

2. Let

\[
K(y_i) : 0 \longrightarrow F_{g-1} \longrightarrow F_{g-2} \longrightarrow \cdots \longrightarrow F_1 \longrightarrow R,
\]
and

\[
K(x_i) \otimes K(y_i) : 0 \longrightarrow R \otimes F_{g-1} \longrightarrow R \otimes F_{g-2} \oplus R \otimes F_{g-1} \longrightarrow \cdots \longrightarrow R \otimes R
\]

\[
\longrightarrow R \otimes F_1 \longrightarrow R \otimes F_1 \longrightarrow R \otimes R.
\]
Then we have

$$
\phi_{i1} = [x_1 \varphi_{11}], \quad \phi_{ik} = \begin{bmatrix}
(-1)^{k-1}\varphi_{ik-1} & 0 \\
x_1I & \varphi_{ik}
\end{bmatrix}
$$

for $k = 2, 3, \ldots, g - 1$,

$$
\phi_{ig} = \begin{bmatrix}
\varphi_{ig-1} \\
-x_i
\end{bmatrix},
$$

(4.1)

Proof. Clear. □

Lemma 4.2. With the notation as above, let $t = \left(\begin{smallmatrix} g \\ 2 \end{smallmatrix}\right)$. Then, for each i

1. Every column of ϕ_{i2} has exactly two nonzero entries.
2. The number of nonzero rows in each $g \times 2$ submatrix of ϕ_{i2} is greater than 2, that is, 3 or 4.

Proof. This follows from the matrix form of ϕ_{i2} (see (2.1) and (2.2)). □

Now we can describe the special properties of ϕ_{i2} in (4.1).

Proposition 4.3. With the notation as above and hypotheses:

1. ϕ_{i2} has g disjoint pairs (S_k, T_k) of a $g \times (g - 1)$ submatrix S_k and a $g \times (t - g + 1)$ submatrix T_k;
2. By removing the ith row and interchanging columns of ϕ_{i2}, each pair (S_k, T_k) can be reduced to a pair (\bar{S}_k, \bar{T}_k), where \bar{S}_k is a $(g - 1) \times (g - 1)$ diagonal matrix whose determinant is x_1^{g-1}, up to sign, and \bar{T}_k is the second differential map in the Koszul complex $K(y_k)$.

Proof. (1) The first statement follows from the second statement.

(2) It is enough to prove the case $i = 1$. For the sake of simplicity, ϕ_{12} can be written as the form

$$
\phi_{12} = \begin{bmatrix}
-\varphi_{11} & 0 \\
x_1I & \varphi_{12}
\end{bmatrix}
$$

(4.2)

Let $S_1 = \phi_{12}(1, 2, \ldots, g | 1, 2, \ldots, g - 1)$ and $T_1 = \phi_{12}(1, 2, \ldots, g | g, g + 1, \ldots, t)$. Then clearly, S_1 and T_1 are disjoint. Taking $S_1 = x_1I$ and $T_1 = \varphi_{12}$ as submatrices of ϕ_{12}, it is clear that $\det S_1 = (x_1)^{g-1}$ and T_1 is the second differential map in the Koszul complex $K(y_1)$. Let $k > 1$ be an integer with $2 \leq k \leq g$. It follows from Lemma 4.2 that every row of ϕ_{12} consists of exactly $g - 1$ nonzero entries and exactly $t - g + 1$ zero entries. Choose S_k to be a $g \times (g - 1)$ submatrix of ϕ_{12} such that all the entries of the kth row are nonzero, and T_k to be a $g \times (t - g + 1)$ submatrix of ϕ_{12} such that all the entries of the kth row are zero. Then clearly S_k and T_k are disjoint. Let S'_k and T'_k be the submatrices of S_k and T_k obtained by removing the kth row of S_k and T_k, respectively. By the part (1) of Lemma 4.2, every column of S'_k has exactly one
nonzero entry. We observe from (4.2) that the nonzero entry in the \(l\)th column of \(S'_k\) is either \(x_k\) or \(-x_k\) for \(l = 1, 2, \ldots, g-1\). The part (2) of Lemma 4.2 implies that every row of \(S'_k\) has exactly one nonzero entry. This implies that interchanging columns of \(S'_k\) produces a \((g-1) \times (g-1)\) diagonal matrix \(\tilde{S}_k\) whose main diagonal entries are either \(x_k\) or \(-x_k\). It follows from the construction of \(T'_k\) and Lemma 4.2 that every column of \(T'_k\) has exactly two nonzero entries and the number of nonzero rows in each \((g-1)\times2\) submatrix of \(T'_k\) is 3. Since \(T'_k\) has \(t - g + 1 = \binom{g-1}{2}\) columns and \(g-1\) rows, interchanging columns of \(T'_k\) (if necessary) gives us the second differential map \(\tilde{T}_k\) in the Koszul complex \(K(y_k)\) (see (4.2)). Actually, \(\tilde{T}_k\) has the form

\[
\tilde{T}_k = \begin{bmatrix}
h_k & 0 \\
d_1 & h'_k
\end{bmatrix},
\]

where

\[
h_k = \begin{bmatrix}
-x_2 & -x_3 & \cdots & -\hat{x}_k & \cdots & -x_g
\end{bmatrix},
\]

\[
d_1 = \text{diag}(x_1, x_1, \ldots, x_1),
\]

\[
h'_k = \text{the second differential map in the Koszul complex } K(y_{1k}) \text{ for } y_{1k} = x_2, x_3, \ldots, \hat{x}_k, \ldots, x_g.
\]

Thus we have the desired one \(\tilde{T}_k\). \(\square\)

To define the ideal \(K_{g-1}(\phi_{12})\) associated with the map \(\phi_{12}\) we need further properties of \(\phi_{12}\).

Theorem 4.4. (1) With the notation as in Proposition 4.3, for each \(1 \leq k \leq g\), a pair \((\tilde{S}_k, \tilde{T}_k)\) of matrices given in Proposition 4.3 is uniquely determined.

(2) If for each \(k\), \(K_{g-2}(\tilde{T}_k)\) is the ideal generated by the elements \(x_1, x_2, \ldots, \hat{x}_k, \ldots, x_g\) given in the proof of Proposition 4.3, then \(K_{g-2}(\tilde{T}_k)\) has grade \(g-1\).

Proof. (1) This follows from Lemma 4.2.

(2) The second part is also clear since \(x_1, x_2, \ldots, \hat{x}_k, \ldots, x_g\) is a regular sequence on \(R\). \(\square\)

Thus Theorem 4.4 enables us to define a complete matrix of grade \(g\). With an induction argument, we may call \(\tilde{T}_k\) given in Theorem 4.4 the complete matrix of grade \(g-1\) in the following sense.

Definition 4.5. Let \(R\) be a commutative ring with identity. Let \(g > 3\) and \(t = \binom{g}{2}\) be integers. A \(g \times t\) matrix \(f = (f_{ij})\) over \(R\) is said to be complete of grade \(g\) if

(1) \(f\) has \(g\) disjoint pairs \((S, T)\) of a \(g \times (g-1)\) submatrix \(S\) and a \(g \times (t-g+1)\) submatrix \(T\);

(2) By removing a row and interchanging columns, each pair \((S, T)\) can be reduced to a pair \((\hat{S}, \hat{T})\), where \(\hat{S}\) is a \((g-1) \times (g-1)\) diagonal matrix with
det(\vec{S}) = x^{g-1} \text{ for some } x \in R, \text{ and } \vec{T} \text{ is the complete matrix of grade } g - 1 \text{ with grade } \mathcal{K}_{g-2}(\vec{T}) = g - 1.

The following example illustrates Definition 4.5.

Example 4.6. Let \(x, y, z, u, w \) be a regular sequence in a Noetherian local ring \(R \). Let

\[
\begin{bmatrix}
y & z & u & w & 0 & 0 & 0 & 0 & 0 \\
-x & 0 & 0 & 0 & z & u & w & 0 & 0 \\
0 & -x & 0 & 0 & -y & 0 & 0 & u & w \\
0 & 0 & -x & 0 & 0 & -y & 0 & -z & w \\
0 & 0 & 0 & -x & 0 & 0 & -y & 0 & -z & -u
\end{bmatrix}
\]

The similar argument as in Example 3.4 shows that \(f \) satisfies the properties in Proposition 4.3 and the part (2) of Theorem 4.4.

The following theorem is an easy generalization of Theorem 3.5.

Theorem 4.7. Let \(g > 3 \) and \(t = \binom{g}{2} \) be integers. A \(g \times t \) matrix \(f = (f_{ij}) \) over \(R \) is a complete matrix of grade \(g \).

1. Every column of \(f \) has exactly two nonzero entries.
2. The number of nonzero rows in each \(g \times 2 \) submatrix of \(f \) is greater than 2.
3. Each pair \((\vec{S}, \vec{T})\) of matrices given in Definition 4.5 is uniquely determined.

Proof. The proofs are essentially similar with those of Theorem 3.5. □

Now we define an ideal \(\mathcal{K}_{g-1}(f) \) generated by the entries in the \((g-1) \times (g-1) \) matrices \(\vec{S} \) derived from a given complete matrix \(f \) of grade \(g \) in Theorem 4.7.

Definition 4.8. Let \(g > 3 \) and \(t = \binom{g}{2} \) be integers. Let \(f \) be a \(g \times t \) complete matrix of grade \(g \). For \(i = 1, 2, \ldots, g \), we let \(\vec{S}_i \) be a unique \((g-1) \times (g-1)\) diagonal matrix extracted from \(f \) in the part (3) of Theorem 4.7 such that \(\det(\vec{S}_i) = x_i^{g-1} \) is nonzero for some \(x_i \in R \). We define \(\mathcal{K}_{g-1}(f) \) to be the ideal generated by the \(x_i \)'s, that is,

\[
\mathcal{K}_{g-1}(f) = (x_1, x_2, \ldots, x_g).
\]

Let \(f = (f_{ij}) \) be a \(g \times t \) complete matrix of grade \(g \). It follows from the properties (1) and (2) of Theorem 4.7 that interchanging columns of \(f \) transforms \(f \) to the following form.

\[
(4.3) \quad f = \begin{bmatrix} h_1 & 0 \\ d_1 & h_2 \end{bmatrix},
\]

where

\[
\begin{align*}
h_1 &= \begin{bmatrix} f_{11} & f_{12} & \cdots & f_{1g-1} \end{bmatrix}, \\
d_1 &= \text{diag}(f_{21}, f_{32}, \ldots, f_{gg-1}), \quad h_2 = \text{a complete matrix of grade } g - 1.
\end{align*}
\]
By applying the method of (3.5) and (3.6) in the case of a complete matrix of grade 4 to the given f, we have

$$K_{g'-2}(T_1) = (\hat{f}_{21}, f_{11}, f_{12}, \ldots, f_{1g-1})$$

and

$$K_{g'-2}(T_i) = (f_{21}, f_{11}, f_{12}, \ldots, \hat{f}_{i-1,i-1}, f_{i,i}, \ldots, f_{1g-1}) \quad \text{for } i = 2, 3, \ldots, g,$$

where \hat{f}_{ii} indicates that f_{ii} is to be omitted.

Hence

$$K_{g'-2}(T_i) \subseteq K_{g'-1}(f) = (f_{21}, f_{11}, f_{12}, \ldots, f_{1g-1}) \quad \text{for each } i.$$

The following lemma will be used in proving the structure theorem for complete intersections of grade $g > 3$.

Lemma 4.9. Let $\mathbf{x} = x_1, x_2, \ldots, x_g$ be a regular sequence on R and \mathcal{E} a minimal free resolution of $R/(\mathbf{x})$. If φ_2 is the second differential map of \mathcal{E}, then φ_2 is a complete matrix of grade g.

Proof. Let $\mathcal{K}(\mathbf{x})$ be the Koszul complex defined by the regular sequence $\mathbf{x} = x_1, x_2, \ldots, x_g$ and d_2 the second differential map in $\mathcal{K}(\mathbf{x})$. We have shown in Proposition 4.3 and the part (2) of Theorem 4.4 that d_2 is a complete matrix of grade g. Let F be the free R-module with the ordered basis $\{e_1 < e_2 < \cdots < e_g\}$. Then $\wedge^2 F$ is a free R-module with the ordered basis $\{e_1 \wedge e_2 < e_1 \wedge e_3 < \cdots < e_{g-1} \wedge e_g\}$. Let $t = \binom{g}{2}$ be an integer. Let

$$\mathcal{E} : 0 \longrightarrow F_g \xrightarrow{\varphi_g} F_{g-1} \xrightarrow{\varphi_{g-1}} \cdots \xrightarrow{\varphi_3} F_2 \xrightarrow{\varphi_2} F_1 \xrightarrow{\varphi_1} R$$

be the minimal free resolution of $R/(\mathbf{x})$ such that F_1 and F_2 are free R-modules with the ordered bases $\{v_1 < v_2 < \cdots < v_g\}$ and $\{w_1 < w_2 < \cdots < w_1\}$, respectively. Then we have a commutative diagram

$$\begin{array}{ccc}
\wedge^2 F & \xrightarrow{d_2} & \wedge^1 F \\
\downarrow{\psi_2} & \circlearrowright & \downarrow{\psi_1} \\
F_2 & \xrightarrow{\varphi_2} & F_1
\end{array}$$

where ψ_1 and ψ_2 are order preserving isomorphisms as free R-modules. Since $\psi_1(e_k) = v_k$ for $k = 1, 2, \ldots, g$ and ψ_2 maps the ith basis element in $\wedge^2 F$ to the ith basis element w_i in F_2 for $i = 1, 2, \ldots, t$, the commutativity implies that d_2 and φ_2 have the same matrix representation. Thus φ_2 is a complete matrix of grade g since d_2 is a complete matrix of grade g. \hfill \square

Now we can describe a structure theorem for complete intersections of grade $g > 3$.

Theorem 4.10. Let R be a Noetherian local ring with maximal ideal \mathfrak{m}.

1. Let $g > 3$ be an integer and $t = \binom{g}{2}$. Let F and G be free R-modules with rank $F = g$ and rank $G = t$. Let $f = (f_{ij}) : G \rightarrow F$ be a complete matrix of
grade g whose image is contained in mF. With the notation as in Theorem 4.7, we assume that $K_{g-2}(T_1) + K_{g-2}(T_2)$ has grade g for some $i,j(1 \leq i \neq j \leq g)$. Then the ideal $K_{g-1}(f)$ is a complete intersection of grade g.

(2) Let $I = (x_1, x_2, \ldots, x_g)$ be a complete intersection of grade g and let \(\varphi_2 \) be the minimal free resolution of R/I. Then φ_2 and the transpose of φ_{g-1} satisfy (1).

Proof. (1) We showed in Theorem 3.7 that the first part of the theorem is true for the case of $g = 4$. Let $f = (f_{ij})$ be a $g \times t$ complete matrix of grade g. As shown in Proposition 4.3, interchanging columns of f transforms f to the form of (4.3). So we may assume that f has the form of (4.3). Then we have

\[
K_{g-1}(f) = \left(f_{21}, f_{11}, f_{12}, \ldots, f_{1g-1} \right).
\]

Since $K_{g-2}(T_1) + K_{g-2}(T_2)$ has grade g for some $i,j(i \neq j)$, it follows from (4.4) and (4.5) that $K_{g-1}(f)$ is a complete intersection of grade g. Let \(x = f_{21}, f_{11}, f_{12}, \ldots, f_{1g-1} \). Then \(y_1 = f_{21}, f_{11}, f_{12}, \ldots, f_{1g-1} \) and each \(y_i = f_{21}, f_{11}, f_{12}, \ldots, f_{i-11}, \ldots, f_{1g-1} \) for $i > 1$ are regular sequences. From (4.4), f_{21} is regular on $R/K_{g-2}(T_1)$, and f_{1i-1} is regular on $R/K_{g-2}(T_1)$ for $i > 1$. Let G_i be a complex of free R-modules such that

\[
G_1 : 0 \longrightarrow R \xrightarrow{f_{21}} R, \\
G_i : 0 \longrightarrow R \xrightarrow{f_{1i-1}} R.
\]

Then by the part (1) of Lemma 4.1, $G_i \otimes \mathbb{K}(y_i)$ is a minimal free resolution of $R/K_{g-1}(f)$.

(2) We showed in Theorem 3.7 that the part (2) holds for the case of $g = 4$. Let $I = (x_1, x_2, \ldots, x_g)$ be a complete intersection of grade g and $I' = (x_2, x_3, \ldots, x_g)$ be a complete intersection of grade $g-1$. The same argument as in the proof of the part (2) of Theorem 3.7 says that φ_2 in (4.6) is of the form

\[
\varphi_2 = \begin{bmatrix}
\tilde{\varphi}_1 & 0 \\
\tilde{d} & \tilde{\varphi}_2
\end{bmatrix},
\]

where

\[
\tilde{\varphi}_1 = \begin{bmatrix}
-x_2 & -x_3 & \cdots & -x_g
\end{bmatrix}, \quad \tilde{d} = \text{diag}(x_1, x_1, \ldots, x_1),
\]

and $\tilde{\varphi}_2$ is the second differential map of the minimal free resolution of R/I'.

Lemma 4.9 says that $\tilde{\varphi}_2$ is a complete matrix of grade $g-1$. Since x_1, x_2, \ldots, x_g is a regular sequence on R, Lemma 4.9 implies that φ_2 is a complete matrix of grade g. We observe that every row of φ_2 consists of $g-1$ nonzero entries and
$t - g + 1$ zero entries. The similar argument as in the proof of Proposition 4.3 gives us the following: Let (S_i, T_i) be a pair of a $(g - 1) \times (g - 1)$ diagonal matrix and a $(g - 1) \times (t - g + 1)$ complete matrix of grade $g - 1$. Then for $i = 1, 2, \ldots, g$,
\[
\det S_i = \pm x_i^{g-1}, \quad K_{g-2}(T_i) = (x_1, x_2, \ldots, x_{i+1}, \ldots, x_g).
\]
So we have
\[
K_{g-1}(\varphi_2) = (x_1, x_2, \ldots, x_g), \quad \text{and} \quad K_{g-2}(T_i) + K_{g-2}(T_j) = K_{g-1}(\varphi_2)
\]
for some $i \neq j$.

We know that each $K_{g-2}(T_i)$ has grade $g - 1$, and $K_{g-1}(\varphi_2)$ is a complete intersection of grade g. Hence φ_2 satisfies the part (1) of Theorem 4.10. Since every complete intersection is Gorenstein, $\mathbb{F} \cong \mathbb{F}^*$ as complexes. So \mathbb{F}^* is the minimal free resolution of R/I. The same argument as in the proof of the part (2) of Theorem 3.7 for $\mathbb{K}(x)$ and \mathbb{F}^* gives us the proof that the transpose of φ_{g-1} is a complete matrix of grade g.

It should be noticed that Theorem 3.7 is just the special case of Theorem 4.10. The following example illustrates how Theorem 4.10 works.

Example 4.11. Let \mathbb{C} be the field of the complex numbers and R the formal power series ring $\mathbb{C}[[x_{ij}, y, z, w, u | 1 \leq i, j \leq 3]]$ over \mathbb{C} with indeterminates x_{ij}, y, z, w, u. Consider a 3×3 matrix X and a 3×3 alternating matrix Y
\[
X = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & w & z \\ -w & 0 & y \\ -z & -y & 0 \end{bmatrix}.
\]
Define
\[
Z_1 = \sum_{i=1}^{3} Y_i x_{i1}, \quad Z_2 = \sum_{i=1}^{3} Y_i x_{i2}, \quad Z_3 = \sum_{i=1}^{3} Y_i x_{i3}, \quad v = \det X.
\]
Then $I = (Z_1, Z_2, Z_3, v)$ is an almost complete intersection of grade 3 of type 3 [1, 5]. Assume that $x = Z_1, Z_2, Z_3$ is a regular sequence on R. Then
\[
J = (z) : I = (Y_1, Y_2, Y_3) = (y, z, w).
\]
Since v is not contained in the ideal $J, I \cap J = (z)$. Hence I is geometrically linked to J by a regular sequence z. Thus by Theorem 2.3, $K = I + J = (y, z, w, v)$ is a complete intersection of grade 4. So $x = y, z, w, v$ is a regular sequence on R. We may assume that u is a regular element on R/K. Thus $H = (y, z, w, v, u)$ is a complete intersection of grade 5. Let
\[
\mathbb{K}(u) : 0 \longrightarrow R \xrightarrow{u} R
\]
be a complex of free R-modules and R-maps. Then $\mathbb{H} = \mathbb{K}(u) \otimes \mathbb{K}(x)$ described as in the part (2) of Lemma 4.1 is the minimal free resolution of R/H. Let φ_2 be the second differential map in \mathbb{H}. Since y, z, w, v, u is a regular sequence
on \(R \), by Lemma 4.9, \(\phi_2 \) is a complete matrix of grade 5. It is easy to show that \(K_3(\phi_2) = (u, y, z, w, v) \) is a complete intersection of grade 5. Moreover, we let \(\bar{T}_i \) be a \(4 \times 6 \) complete matrix of grade 4 with the same notation, \(\bar{T}_i \) in Definition 4.5. Then we have

\[
K_3(\bar{T}_i) = (y, z, w, v), \quad K_3(\bar{T}_2) = (u, z, w, v), \quad K_3(\bar{T}_3) = (u, y, w, v),
\]

\[
K_3(\bar{T}_4) = (u, y, z, v), \quad K_3(\bar{T}_5) = (u, y, z, w).
\]

Hence \(K_3(\bar{T}_i) + K_3(\bar{T}_j) = K_4(\phi_2) \) for some \(i \neq j \). This illustrates the Theorem 4.10.

References

Eun Jeong Choi
University College
Yonsei University
Seoul 120-749, Korea
E-mail address: eunjchoi@yonsei.ac.kr

Oh-Jin Kang
Department of Mathematics
Science College
University of Incheon
Incheon 402-749, Korea
E-mail address: ohkang@incheon.ac.kr

Hyoung J. Ko
Department of Mathematics
Yonsei University
Seoul 120-749, Korea
E-mail address: hjko@yonsei.ac.kr