나노임프린트 리소그래피에서의 플리머 레지스트의 변형에 관한 분자 동역학 시뮬레이션

강지훈†·김광섭*·김경웅*
(2004년 11월 30일 접수, 2005년 4월 21일 심사완료)

Molecular Dynamics Simulation of Deformation of Polymer Resist in Nanoimprint Lithography

Ji-Hoon Kang, Kwang-Seop Kim and Kyung-Woong Kim

Key Words : Nanoimprint Lithography(나노임프린트 리소그래피), Molecular Dynamics Simulation(분자 동역학 시뮬레이션), Deformation of Polymer Resist(플리머 레지스트 변형)

Abstract

Molecular dynamics simulations of nanoimprint lithography in which a stamp with patterns is pressed onto amorphous poly-(methylmethacrylate) (PMMA) surface are performed to study the deformation of polymer. Force fields including bond, angle, torsion, inversion, van der Waals and electrostatic potential are used to describe the intermolecular and intramolecular force of PMMA molecules and stamp. Periodic boundary condition is used in horizontal direction and Nosé-Hoover thermostat is used to control the system temperature. As the simulation results, the adhesion forces between stamp and polymer are calculated and the mechanism of deformation are investigated. The effects of the adhesion and friction forces on the polymer deformation are also studied to analyze the pattern transfer in nanoimprint lithography. The mechanism of polymer deformation is investigated by means of inspecting the indentation process, molecular configurational properties, and molecular configurational energies.

1. 서 론

1947년 트랜지스터가 발명된 이후 반도체 제조산업에서 시작된 미소 구조물들을 만들기 위한 노력은 꾸준히 증가하여 이제는 거의 모든 과학기술분야에서 이루어지고 있다. 이에 따라 미소 구조물을 제조할 수 있는 능력은 현재 과학기술분야에서의 핵심적인 능력이 되어가고 있다.

이러한 경향은 최근 분자 및 원자 스케일에서 일어나는 현상들에 대한 많은 이해에 힘입어 현재 제조 가능한 미소 구조물을 측정하는 마이크로 미터를 거나 수십-수백 나노미터에 이르고 있으며, 매우 광범위하게 일어나고 있기 때문에 어느 분야에서도 쉽게 찾아볼 수 있다. 일례로 트랙 폭이 100nm인 자기장 보정기이나 피트(pit: 정보가 저장되는 구멍) 크기가 50nm인 저장 장치, 센서나 액추エ이터의 크기가 수 백 nm의 NEMS(nanoelectro-mechanical system) 기기들에 대한 연구는 현재 활발히 진행 중이며, 특히 Semiconductor Industry Association (SIA) 로드맵의 측대로 DRAM의 선폭은 꾸준히 줄어들고 있다.

이러한 기기를 만들기 위해서는 크기가 수십-수백 nm에 이르는 구조 및 형상을 대량으로 만들 수 있는 제조 기술이 필수적으로 요구된다. 그러나 현재 미소 구조물을 제조하는데 가장 널리 사용되고 있는 포토리소그래피(photolithography) 방법은 미소 구조물을 대량으로 제조하는데 많은 문제점들을 갖고 있다. 포토리소그래피는 빛의 흡열현상에 의해 물질이 재현되며, 또한 가공 과정이 순차적이기 때문에 시간 및 비용이 많이 든다. 또한 가공하려는 재료와
표면 상태에 많은 영향을 받는다. 이러한 포토라소프라피의 한계 때문에 현재 대안적인 제조 기술들이 연구되고 있다.

이러한 대안적인 제조 기술들 중에 Chou등이 제안한 나노임프린트 라소그래피는 효과적으로 나노 구조물을 제작할 수 있는 기술로서, 나노미터 크기의 패턴이 각인된 스텝과 플라에서는 레지스트 표면에 눈에 띄는 패턴을 전사하는 방법이다. 이 방법은 제작된 스텝을 반복적으로 사용할 수 있고, 한 번에 대면적의 패턴을 전사할 수 있기 때문에 매우 경제적이다.

나노임프린트 리소그래피에서는 패턴을 전사하는 과정 중에 스텝과 레지스트 사이에 물리적인 접촉이 일어난다. 따라서 두 재료 사이에 반드시 응وص과 마찰이 수반되며 이 응력과 마찰은 패턴 전사의 품질을 크게 영향을 주는 원인이 된다. 따라서 스텝과 플라에서는 레지스트 사이에 일어나는 틈을 제거하고 포토라소프라피의 변형을 예측하는 일을 응용바른 패턴 전사를 위해 매우 중요하다.

현재까지 나노임프린트 리소그래피에 대한 많은 연구가 수행되었으며 수백 nm 크기의 패턴들이 실험실 규모에서 제작되고 있다. 패턴 전사의 품질을 높이고 필요한 응력과 온도를 낮추기 위해 poly(methyl methacrylate) (PMMA)나 polydimethylsiloxane (PDMS) 등의 여러 플라재료들에 대한 연구가 수행되었고, SiN을 이용하기도 하였다. 또한 다이아몬드 스텝을 이용하여 구리나 알루미늄 등의 금속 재료에 수백 nm 크기의 패턴을 가공하기도 하였다. 최근에는 레이저를 이용하여 레지스트 표면을 빈간적으로 낮은 응력으로 10nm 크기의 패턴을 제작한 결과도 보고되었다.

그러나 최근까지의 연구들은 모두 실험을 통한 패턴 제작에 치우쳐 있다. 실험을 통해 실제로 패턴을 제작하고패턴 성능을 확인하는 것이 매우 중요한 일임은 분명하나 나노임프린트 리소그래피의 제조 기술을 확립하기 위해서는 패턴 전사 중에 일어나는 플라스틱 레지스트의 변형 특성이와 접촉 중에 일어나는 현상을 이론적으로 규명하여 이러한 정보를 실제 나노임프린트 리소그래피 공정 설계에 이용하는 일이 반드시 필요하다.

본 연구에서는 나노임프린트 리소그래피 공정에서 일어나는 플라스틱 레지스트의 변형 특성을 이해하기 위해 분자 동역학 시뮬레이션을 수행하였다. 분자 동역학은 원자나 분자 스케일의 시스템처럼 크기가 매우 작아 연속체 역학을 적용하기 곤란한 경우에 적용이 가능하며 일정시간의 계산이 필요하다. 나노임프린트 리소그래피에서는 원자 스케일의 스텝을 레지스트 표면에 눈에 띄는 패턴과 마찰, 나노임프린트 공정 등에 해석하기 위해 이용되어 왔다. 본 연구에서는 나노임프린트 리소그래피에 대한 분자 동역학 시뮬레이션을 통해 패턴 전사 중에 일어나는 플라스틱 레지스트의 변형을 분석하고 스텝과 레지스트 사이의 응운동과 마찰이 패턴 전사에 미치는 영향을 살펴본다.

2. 해석 방법

2.1 해석 모델

본 연구에서 다루게 될 스텝과 플라스틱 레지스트, 고체 벽으로 이루어진 해석 모델은 Fig. 1에 나타나 있다. 스텝은 다이아몬드 구조를 가지는 탄소 원자로 이루여있으며 플라스틱 레지스트는 PMMA 분자로 이루어져 있다. PMMA 분자들은 고체 벽 위에 올려져 있는데 이 고체 벽은 기판(substrate)에 해당하며 나침 원자로 이루어져 있다. 해석 모델의 x와 y 방향 길이는 10nm 이며, 높이는 17.5nm 이다. 스텝의 방향에서 x와 y 방향으로는 주기 경계 조건을 주었고 z 방향으로는 고정 경계 조건을 주기 위해 고체 벽에 해당하는 원자들은 음적이지 않는다고 가정하였다.

PMMA 레지스트는 amorphous 상태이며 64개의 PMMA 분자로 이루어져 있다. 모든 PMMA 분자들은 100개의 단위체(monomer)로 이루어져 있으며 분자량은 10,016이다. PMMA 레지스트를 두르는 스텝은 기판(base part)와 형상부(pattern part)로 이루어져 있으며 각각 7,680개와 19,200개의 탄소 원자로 이루어져 있다. 또한 z 방향으로 (111)면을 가진다. 스텝은 매우 단단하여 변형이 없다고 가정하였다. 고체 벽은 z 방향으로 (111)면을 가지는 FCC 구조를 이루는 나침 원자 780개로 이루어져 있다.

시뮬레이션 동안 PMMA 레지스트의 온도는 300K
로 유지되었다. 이를 위해 Nosé-Hoover(12,13) 시모스펫
을 이용하였다. Nosé-Hoover 시모스펫을 적용한
PMMA 원자의 운동 방정식은 다음과 같다.

\[
\frac{dr_i}{dt} = \frac{\mathcal{P}_i}{m_i}
\]

(1)

\[
\frac{\mathcal{P}_i}{dt} = \mathcal{F}_i - \frac{\mathcal{P}_i}{Q} \mathcal{P}_i
\]

(2)

\[
\frac{d\xi}{dt} = \frac{\mathcal{P}_i}{Q}
\]

(3)

\[
\frac{d\mathcal{P}_i}{dt} = \sum \mathcal{P}_j - g k_B T_0
\]

(4)

\[\xi\]는 열역학적 미활 계수이며, \[Q\]는 열역학적 질량,
\[\mathcal{P}_i\]는 열역학적 운동량으로 시스템의 운도를 조절하기
위한 변수이다. \[\mathcal{F}_i\]는 입자에 작용하는 힘이며 \[\mathcal{P}_i\]과
\[\mathcal{F}_i\]는 각각 입자의 위치와 속도이다. \[T_0\]은 설명적온도
이며, \[g\]는 시스템의 자유도, \[k_B\]는 볼츠만 상수이다.

2.2 분자 모델

분자 동역학 시뮬레이션에서 각 입자에 작용하는
힘은 포텐셜 에너지의 구매(gradient)로 주어지기 때문
에 포텐셜 에너지를 정확하게 구하는 것이 매우 중요
하다. 본 연구에서는 PMMA 분자들의 포텐셜 에너지
를 나타내기 위해 다음과 같은 force field 를 이용하였
으며 상수는 Okada 등(10)이 제시한 결과를 이용하였다.

\[
U = \sum_{\text{bond}} k_b (r-r_0)^2 + \sum_{\text{angles}} k_\theta (\theta-\theta_0)^2
\]

\[+ \sum_{\text{torsion}} (V_1 \cos \phi + V_2 \cos 2\phi + V_3 \cos 3\phi + V_4 \cos 6\phi)
\]

\[+ \sum_{\text{improper}} (K_1 (\phi-\phi_0) + K_2 (\phi-\phi_0)^2)
\]

\[+ \sum_{i,j \text{nonbonded}} \left(A_i r_{ij}^{-12} - B_i r_{ij}^{-6} + C_i \delta_{ij} + D_i \right)
\]

(5)

첫번째 항은 결합 길이에 대한 포텐셜 에너지이며
(r=결합 길이, \(r_0\)=평평 상태의 결합 길이) 두번째 항은
두 개의 결합이 이루는 각각각의 포텐셜 에너지이다(\(\theta\)-결합각, \(\Theta=\)평평 상태의 결합각). 세번째 항은 세
개의 결합이 이루는 뒤판각에 대한 포텐셜 에너지
이며(\(\phi=\)위험각) 네번째 항은 평평한 결합에
대한 포텐셜 에너지이다(\(\phi\)=세 개의 결합각의
합, \(\phi_0\)=평평 상태의 세 개의 결합각의 합). 다섯번째 항은 nonbond 에너지로서 결합 거리가 4 인
two 입자들 사이에 작용하는 힘을 모사하기 위한
Lennard-Jones 포텐셜이며 여섯번째 항은 결합 거리가
5 이상인 두 입자 사이의 반데르발스함을 모사하기
위한 Lennard-Jones 포텐셜과 정점기를 모사하기 위

Fig. 4 Energies in relaxation process

한 정전기 포텐셜로 이루어져 있다. 또한 스텔프-
PMMA 사이에 작용하는 힘을 모사하기 위해 Lennard-
Jones 포텐셜을 이용하였으며 상수는 Cornell 등(10)
이 제시한 AMBER force field 를 이용하여 구하였다.
Cornell 등이 제시한 AMBER force field는 생체분자들
을 대상으로 최적화된 force field 이다. 본 연구에서는
스템프를 rigid 하다고 가정하기 때문에 스텔프를 이루
고 있는 탄소원자의 반데르발스 에너지를 나타내는
Lennar-Jones 포텐셜의 상수만 필요하다. 고체 벽과
PMMA 사이에 작용하는 힘을 모사하기 위해서 역시
Lennar-Jones 포텐셜을 이용하였으며 상수는 Zhang
과 One(16)에 있는 값을 이용하였다.

Fig. 3은 PMMA 분자가 나타낸다. 계산 시간이 줄이
기 위해 United atom (UA) model을 이용하여 C4S1에 붙
여 있는 메틸기를 하나의 입자 C1로, CH3를 하나의
입자 C2로, C2S에 붙여 있는 메틸기를 하나의 입자
C1S2로 보았다. 입자들의 성질을 나타내는 상수와
force field에 이용된 상수들은 Table 1에 나타나 있다.
Table 1 Force field parameters of PMMA, stamp and solid wall

<table>
<thead>
<tr>
<th>Atom</th>
<th>Mass (amu)</th>
<th>Charge (e)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>15.0</td>
<td>0.0</td>
<td>United atom, CH₃</td>
</tr>
<tr>
<td>C2</td>
<td>14.0</td>
<td>0.0</td>
<td>United atom, CH₂</td>
</tr>
<tr>
<td>C4S1</td>
<td>12.0</td>
<td>0.11</td>
<td>Single atom</td>
</tr>
<tr>
<td>CDS</td>
<td>12.0</td>
<td>0.31</td>
<td>Single atom</td>
</tr>
<tr>
<td>C1S2</td>
<td>15.0</td>
<td>0.26</td>
<td>United atom, CH₃</td>
</tr>
<tr>
<td>ODS</td>
<td>16.0</td>
<td>-0.37</td>
<td>Single atom</td>
</tr>
<tr>
<td>O2S</td>
<td>16.0</td>
<td>-0.31</td>
<td>Single atom</td>
</tr>
<tr>
<td>Ni</td>
<td>58.7</td>
<td>0.0</td>
<td>Single atom in solid wall</td>
</tr>
<tr>
<td>CD</td>
<td>12.0</td>
<td>0.0</td>
<td>Single atom in diamond stamp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond stretch</th>
<th>r_0 (Å)</th>
<th>k_b (kcal/mol/Å²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-C4S1</td>
<td>1.539</td>
<td>368</td>
</tr>
<tr>
<td>C2-C4S1</td>
<td>1.549</td>
<td>300</td>
</tr>
<tr>
<td>C4S1-CDS</td>
<td>1.517</td>
<td>326</td>
</tr>
<tr>
<td>CDS-ODS</td>
<td>1.209</td>
<td>968</td>
</tr>
<tr>
<td>CDS-O2S</td>
<td>1.360</td>
<td>471</td>
</tr>
<tr>
<td>O2S-C1S2</td>
<td>1.446</td>
<td>342</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bending</th>
<th>θ</th>
<th>k_θ (kcal/mol/ rad²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4S1-C2-C4S1</td>
<td>113.3°</td>
<td>89.5</td>
</tr>
<tr>
<td>C°-C4S1-C°-C°</td>
<td>109.47°</td>
<td>87.9</td>
</tr>
<tr>
<td>C4S1-CDS-O2S</td>
<td>111.4°</td>
<td>74.5</td>
</tr>
<tr>
<td>C4S1-CDS-ODS</td>
<td>125.6°</td>
<td>63.3</td>
</tr>
<tr>
<td>ODS-CDS-O2S</td>
<td>123.0°</td>
<td>126.5</td>
</tr>
<tr>
<td>CDS-O2S-C1S2</td>
<td>116.4°</td>
<td>84.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inversion</th>
<th>K_1 (kcal/mol/ rad)</th>
<th>K_2 (kcal/mol/ rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDS</td>
<td>-60.0</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Torsion</th>
<th>V_1 (kcal/mol)</th>
<th>V_2 (kcal/mol)</th>
<th>V_3 (kcal/mol)</th>
<th>V_4 (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C°-C4S1-C2-C4S1</td>
<td>3.5</td>
<td>0.0</td>
<td>0.87</td>
<td>0.05</td>
</tr>
<tr>
<td>CDS-C4S1-C2-C4S1</td>
<td>3.5</td>
<td>0.7</td>
<td>0.87</td>
<td>0.05</td>
</tr>
<tr>
<td>C°-C4S1-CDS-O2S</td>
<td>2.4</td>
<td>0.0</td>
<td>0.44</td>
<td>0.0</td>
</tr>
<tr>
<td>C°-C4S1-CDS-ODS</td>
<td>0.0</td>
<td>-1.9</td>
<td>0.26</td>
<td>0.0</td>
</tr>
<tr>
<td>C4S1-CDS-O2S-C1S2</td>
<td>4.07</td>
<td>-2.23</td>
<td>-0.16</td>
<td>0.0</td>
</tr>
<tr>
<td>ODS-CDS-O2S-C1S2</td>
<td>0.0</td>
<td>-2.20</td>
<td>-0.35</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,5-Nonbonding</th>
<th>A (kcal/mol/Å¹²)</th>
<th>C (kcal/mol/Å⁶)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4S1-ODS, C4S1-O2S</td>
<td>1.35 × 10⁷</td>
<td>4900</td>
</tr>
<tr>
<td>CDS-CDS</td>
<td>1.1 × 10⁶</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>van der Waals</th>
<th>A_{ii} (kcal/mol/Å¹²)</th>
<th>C_{ii} (kcal/mol/Å⁶)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C°-C°</td>
<td>7.1 × 10⁶</td>
<td>2400</td>
</tr>
<tr>
<td>C2-C2</td>
<td>7.1 × 10⁶</td>
<td>1650</td>
</tr>
<tr>
<td>C4S1-C4S1</td>
<td>7.1 × 10⁶</td>
<td>40</td>
</tr>
<tr>
<td>CDS-CDS</td>
<td>2.03 × 10⁶</td>
<td>571</td>
</tr>
<tr>
<td>ODS-ODS</td>
<td>1.44 × 10⁶</td>
<td>440</td>
</tr>
<tr>
<td>O2S-O2S</td>
<td>1.44 × 10⁶</td>
<td>391</td>
</tr>
<tr>
<td>Ni-Ni</td>
<td>1.0 × 10⁷</td>
<td>2457.6</td>
</tr>
<tr>
<td>CD-CD</td>
<td>4.17 × 10⁶</td>
<td>1351.2</td>
</tr>
</tbody>
</table>

"°C° represents C1, C2 and CDS. C°° represents C1 and C2.
"The combining rules are $A_{ij} = \left((A_{ii} + A_{jj})/2\right)$ and $C_{ij} = (C_{ii}C_{jj})^{1/2}$
"°C°° represents C1 and C1S2
2.3 시뮬레이션 과정
본 시뮬레이션에서 앞서 PMMA 레지스트는 폴렌설 에너지가 낮은 상태로 잘 완화(well-relaxed)되었어 야 한다. 이를 위해 우선 몬테카르로(Monte-Carlo) 방법을 이용하여 박막 형태의 PMMA 레지스트를 만든다. 이렇게 만들어진 PMMA 레지스트는 nonbond 폴렌설 에너지가 매우 높기 때문에 폴렌설 에너지를 낮추는 완화(relaxation)과정을 위해 Nose-Hoover 사모스트랫을 이용한 분자 동역학 시뮬레이션을 수행한다. Fig. 4는 Nose-Hoover 사모스트랫을 이용한 완화 과정 동안의 전체 에너지, 운동 에너지, 폴렌설 에너지를 나타낸다. 폴렌설 에너지는 점점 감소하여 일정한 값으로 수렴하는 것을 알 수 있다. 이렇게 얻어진 PMMA 레지스트는 밀도가 1.0g/cm³ 이었으며 이는 실제 값인 1.05 g/cm³과 매우 잘 일치하였다.

시뮬레이션은 Fig. 5 와 같은 단계를 거쳐 이루어진다. 첫 번째로 스텝프는 100m/s 의 속도로 놓치난다. 약 36ps 후에 스텝프는 PMMA 레지스트 표면에 닿게되며 이때부터 25m/s 로 80ps 동안 압어 이 이루어진다. 따라서 전체 압입 깊이는 2.0nm이다. 이후 스텘프는 222prs 동안 머무르며 마지막으로 100m/s의 속도로 60ps 동안 위로 이동하여 PMMA 레지스트로부터 완전히 분리된 후에 20ps 동안 머무른다. PMMA 레지스트의 초기온도는 300K이며 시뮬레이션 동안 Nose-Hoover 사모스트랫으로 온도가 유지된다. 수치 적분을 위해 velocity Verlet 알고리즘을 이용하였으며 시간 간격은 2fs 로 하였다.

3. 결과 및 고찰
3.1 분자 변형
Fig. 6는 시뮬레이션 과정 동안 각 단계의 모습을 나타낸다. Fig. 6(a)는 스텝프가 PMMA 레지스트 표면에 닿기 직전의 모습을 나타낸다. Fig. 6(b)는 360ps의 순간으로서 스텝프가 PMMA 레지스트 표면에 닿았다고 여겨지는 순간이다. 스텝프 바로 밑의 PMMA 입자들이 스텝프의 표면을 따라 정열되어 있음을 알 수 있다. Fig. 6(c)는 압입 중간의 모습을 나타낸다. PMMA 레지스트가 스텝프의 표면 형상대로 변형하고 있음을 알 수 있으며 스텝프의 양 가장자리 부분에서는 파일업 현상이 나타나기도 한다. Fig. 6(d)는 압입이 끝난 직후의 모습을 나타낸다. PMMA 레지스트는 대부분 스텝프의 형상대로 변형하지만 일부 부분에서는 그렇지 못한 것을 볼 수 있다. 이는 스텝프와 PMMA 레지스트 사이의 마찰력이 PMMA 분자들이 스텝프 표면을 따라 움직이는데 도움을 줘야하기 때문이라는 생각이다. 이러한 현상은 Fig. 6(e)에서 보듯이 스텝프가 일정한 시간 동안 머무른 후에는 사라지게 된다. Fig. 6(f)와 Fig. 6(g)는 스텝프가 분리되고 있는 모습을 나타내고 있다. 몇몇의 PMMA 분자들이 스텝프 표면에 닿아있어 끌려오는 것을 관찰할 수 있다. 이러한 현상은 스텝프의 아래면 뿐만 아니라 앞면에서도 일어나고 있다. 이는 스텝프와 PMMA 레지스트 사이의 응축이 마찰에 일어나는 현상이며 매년 전사의 풍경을 크게 몰아들이는 원인이 된다. Fig. 6(h)는 스텝프가 완전히 분리된 모습을 나타낸다. 스텝프에 의해 끌어 올라간 PMMA 분자들은 더 이상 움직이지 않으며 스텝프가 압입되었던 지역의 표면은 평평에 전사되었음을 알 수 있다. 그러나 스텝프와 PMMA 레지스트 사이의 마찰과 응축의 영향으로 PMMA 레지스트 표면의 분자들이 떨어져 나가기 때문에 전사된 평평은 명확하지 않으며 경계 역시 다소 불명확하다.

Fig. 7은 표면으로부터 각각 다른 거리에 위치한 세 개의 분자들의 최적반경(radius of gyration)을 나타내며 Fig. 8은 이 분자들의 위치를 나타낸다. 분자 1은 PMMA 레지스트의 표면에 위치하며 스텝프와 닿아있었다. 분자 2는 PMMA 레지스트의 중간에 위치하며 분자 3은 PMMA 레지스트의 아래에 위치한다. 분자 1의 시간에 대한 최적반경의 변화가 Fig. 7(a)~7(d)에 나타나 있는데 각각 최적반경 x 방향 최적반경, y 방향 최적반경, z 방향 최적반경, x 방향 최적반경, y 방향 최적반경, z 방향 최적반경을 나타낸다. 분자 2에 대한 최적반경의 변화는 Fig. 7(e)~7(h)에, 분자 3에 대한 최적반경의 변화는 Fig. 7(i)~7(l)에 나타나 있다. Fig. 7(a)와 Fig. 7(c)과 Fig. 7(l)을 비교해 보면 표면에서 스텝프와 접촉하는 분자 1이 가장 크게 변형함을 알 수 있다. Fig. 7(b)~7(d)을 살펴보면 스텝프의 압입시에는 분자 1의 x 방향과 y 방향 최적반경은 약간 증가하는 반면, z 방향 최적반경은 크게 줄어들음을 알 수 있다. 이는 분자 1이 스텝프의 압입시 z 방향으로 압축력을 받기 때문이며 스텝프의 분리 과정 동안에는 스텝프
의 표면에 달라붙기 때문이다. 반면 Fig. 7(c)와 Fig. 7(d)을 보면 분자 2와 분자 3은 스태프의 압력이나 본리 과정 동안 거의 변형하지 않은 것을 알 수 있으며 Fig. 7(e)에서 더욱 자세히 확인할 수 있다. 스태프의 압력 과정 동안 분자 2와 3의 z방향 회전 반경이 약간 줄어들었을 뿐 그 외의 변화는 거의 나타나지 않았다. 또한 스태프에서 가장 멀리 떨어진 분자 3의 변화가 레이스트의 중간에 위치한 분자 2의 변화보다 적은 것을 알 수 있다.

3.2 스태프에 작용하는 힘
Fig. 9는 시뮬레이션 동안 스태프에 작용하는 힘을 나타내고 있다. 스태프에 작용하는 힘은 압력이 시작되는 30ps 후부터 증가하기 시작한다. 압력이 진행되는 동안 스태프에 작용하는 z방향 힘은 계속하여 증가하는 반면 x와 y방향 힘은 거의 변화가 없다. 압력이 끝난 직후, 스태프에 작용하는 힘은 매우 급격히 감소하여 수십 ps 내에 0이 된다. 이는 점탄성 물질인 PMMA 레이스트가 유체의 성질을 지니고 있기 때문이다.

스태프의 본리 과정이 시작되는 순간부터는 스태프에 작용하는 응력력 및 마찰력이 급격히 증가함을 알 수 있다. 이는 PMMA 레이스트와 스태프가 강한 인력으로 붙어 있다는 것을 의미한다. PMMA 레이스트와 스태프를 분리하기 위해서는 이러한 응력력이나 마찰력보다 큰 외력이 필요하다. 일반 스태프와 PMMA 레이스트가 떨어지기 시작하면 이러한 응력력은 매우 급격히 감소하여 수십 ps 내에 0이 된다. 따라서 스태프와 PMMA 레이스트가 분리되는 순간 발생하는 강한 응력력 및 마찰력이 폐린 전사의 풍질을 떨어뜨리는 큰 원인이라 생각된다.

3.3 에너지 변화
Fig. 10은 각각 결합길이, 결합각, 뒤집림, 반대방향 포텐셜 에너지를 나타낸다. 압력 이후 결합길이와 반대방향 포텐셜 에너지는 감소하지만, 결합각과 뒤집림 포텐셜 에너지는 증가한다. 결합각과 뒤집림 포텐셜 에너지가 증가하는 것은 PMMA 분자들의 형태가 변형했기 때문이라고 생각된다. 스태프가 압입
물에 따라 PMMA 분자들은 압력이 가해지면 압력
전 압력에 토성 에너지의 형태로 PMMA 분자들은
저장되어 결합각과 위험률 토성 에너지의 증가로
나타나기 때문이다. 압력이 떨어지고 스탬프가
정지된 후에서, 결합각과 위험률 토성 에너지가 점점 낮아
지는데 이는 압축된 상태에서 PMMA 분자들이 변형
하여 저장된 토성 에너지를 운동에너지로 변화시키는
완화 과정이 진행되기 때문이다. 스탬프가 PMMA 레지스트로부터
분리되기 시작할

Fig. 7 Radius of gyration of three molecules

PMMA film

Molecule 1

Molecule 2

Molecule 3

Fig. 8 Position of three molecules located
differently from bottom wall

Fig. 9 Force on stamp

(a) Bond energy

(b) Angle energy

(c) Torsion energy

(d) Nonbonding

Fig. 10 Potential energies
때에는 뒤파일 포렌설 에너지가 감소하며 반테르말스 포렌설 에너지가 증가한다. 스텝프가 분리됨에 따라 PMMA 분자들에 작용하던 압력이 없어져 PMMA 분자들의 형태가 변형하여 더 낮은 뒤파일 포렌설 에너지를 가지는 상태로 분자들의 구조가 변형하게 된다. 반면 반테르말스 포렌설 에너지가 증가하는 이유는 스텝프와 PMMA 포렌설 분자들이 분리시키는데 필요한 에너지가 반테르말스 포렌설 에너지로 전환되기 때문이다.

4. 결론

본 연구에서는 나노임프린트 리소그래피에 대한 분자 동역학 시뮬레이션을 수행하여 배턴 전사 중에 일어나는 PMMA 레지스트의 변형을 관찰하고 스텝프와 레지스트 사이의 응착과 마찰이 배턴 전사에 미치는 영향을 연구하였다. 스텝프와 PMMA 레지스트 사이에서 발생하는 마찰력 및 응력 때문에 PMMA 분자들이 스텝프에 달라 붙으며 이는 배턴 전사의 품질을 떨어뜨린다. 스텝프의 압입 및 분리 과정 동안 PMMA 레지스트 표면 근처의 분자들을 변형하였으며 표면과 멀리 벗어난 분자는 거의 변형하지 않았다. 또한 PMMA의 포렌설 에너지 변화를 통하여 PMMA 분자들의 구조가 변하는 것을 확인하였다.

후기

본 연구는 21세기 프로더티 연구개발사업인 나노메카트로닉스 기술 개발 사업단의 연구비 지원(02-K14001-013-1-2)을 받아 수행되었습니다.

참고문헌